Lesson Notes: Multiplying Polynomials – Monomials and Binomials (Day1)

Review: Gr. 9 Material Talk about what is a polynomial vs non polynomial? (have student brainstorm and create their own examples)

Ex./Polynomials 4x+6, $-6x^2+8x-1$, 3x, 5

Polynomial non – examples $\sqrt{x} + 6(RADICALEXPRESSION) \frac{5}{x+6} or \frac{6}{x^2} - 8$ (rational expressions)

Vocabulary: What is a variable? What is the degree of a polynomial? Coeffcient? Constant? Binomial? Trinomial ? and monomial?

Have students create examples of monomials, binomials and trinomials. Then find the coefficients and constant .

Review what each algebra tile represents:

The terms of a polynomial can	be represented by usin	g Algebra Tiles.		
$\begin{bmatrix} & x^2 & x & 1 \end{bmatrix}$	- x ² - x - 1		at each tile represents an be ANY letter!	
Question #1) Represent the following	ng polynomials using algeb	ora tiles		
a) $3x^2 - 4x + 2$ and create zero pairs)	b) $-2x^2 + 7$	c) $4x^2 - 3x + 4 - 4x^2 - 3x^2 - $	$2x^2 + 5x + 3$ (simplify combined	ne like terms
Question #2) Solve and represent th dimension 4 x 3	is product concretely and 3 x 4		gebra tiles) Need to make a ree	ctangle with
Concretely	<u>Pictorially</u>		Symbolically	
(using algebra tiles or counters)	(Draw algebra tiles or	r a rectangle)	(Only using numbers and ope	erations)
Question #3) Using algebra tiles rep	resent and solve these pr	oducts		
a) 4(3x)	b) x(2x+1) " to help	build the rectangle p	lace guiding tiles	c)-4(3x)

e) (x-3)(2x-1)" Rearrange tiles to combine like terms" f) (3x-1)(2x+3)

" Rearrange tiles to put like terms together and combine zero pairs (rewrite your trinomial with like terms combined in simplest form)

Have students make up questions on whiteboards /paper and pass to another set of partners. Have students complete each question and pass back to check.

3.5/3.6 Multiplying Polynomials – Monomials and Binomials (Day1)

<u>Concept #18:</u> 3.5/3.6 Correctly multiply two binomials (NC) (Skill)

This represents the product of the constant 4 and the monomial, 3x. We can model the product as 4 rows of three "x" tiles. X X X 1

We can Model 4(3x) as the area of a rectangle with dimensions 4 and 3x.

The expression (2c)(4c) is the product of two monomials.

We interpret the product with algebra tiles arranged to form a rectangle with dimensions 2c and 4c.

To help build the rectangle, we place guiding tiles to represent each dimension. Then we fill in the rectangle with tiles.

We need eight c tiles to build the rectangle.

So, $(2c)(4c) = 8c^2$

Solving products of all polynomials with degree 1 or less can be represented **concretely** (Using algebra tiles) , **pictorially** (Drawing algebra tiles or rectangles) or **symbolically** (Using numbers and operations).

Here are three strategies to determine the product of binomials

Note that (h + 11)(h + 5) = (h + 5)(h + 11) since both products represent the area of the same rectangle.

To multiply polynomials of larger degrees we can use the distributive property and exponent laws

a) -3x(2x+2)	b) 5m(-2m-3)
c) -5x ² y(2x + 3y)	d) $3m^2n^3p^2(-5m^2n + 2mp^3 - 4n^2p^6)$

Example #2) Multiply two binomials. Expand and simplify. Use algebra tiles and sketch the tiles you used.

a)	(c+4) (c+2)	b)	(x - 4)(x + 2)

Example #3) Expand and simplify. Use the distributive property.				
a)	(3d + 4)(4d + 2)	b)	(-2g + 8)(7 - 3g)	c) (8 - b)(3 - b)

3.5/3.6 Multiplying Polynomials – Monomials, Binomials and Trinomials (Day 2)

Concept #19: 3.7 Correctly multiply a binomial by a trinomial and a trinomial by a trinomial (NC)(Skill)

The <u>distributive property</u> can be used to perform any polynomial multiplication. Each term of one polynomial must be multiplied by each term of the other polynomial.

Example #1) Using the Distributive Property to Multiply Two Polynomials (NO CALCULATORS) **Expand and simplify** b) $(-3f^2 + 3f - 2)(4f^2 - f - 6)$ $(2h + 5)(h^2 + 3h - 4)$ a) Example #2) Multiplying Polynomials in More Than One Variable **Expand and Simplify** $(2r + 5t)^2$ a) Check solution for t=2 and r=3b) (3x - 2y)(4x - 3y + 5)Example #3) Expand and Simplify a) (x+5)³ b) (2x-3)³

b)
$$(2x^2 + 6x + 5) + (-4x^2 - 3x + 7)$$

c) $(3a^2 - 2a + 6) - (-2a^2 + 7a - 9)$

Example #5) Simplifying Sums and Differences of Polynomial Products

Note: Use order of operations. Multiply before adding and subtracting. Then combine like terms.

Expand and Simplify

a) $(3x - 1)(2x - 4) - (3x + 2)^2$

b) 2b(2b - c)(b + c)

3.3 Greatest Common Factors(GCF) of Polynomials (Day3)

Greatest common factor of variables: The smallest common exponent of each variable in each term Ex. x^5y^3 and x^8y The GCF = x^5y between the two monomials

Note: Take a negative GCF out if the first term is negative.

Concept #20: 3.3 Correctly factor polynomials with a GCF (NC)(Skill)

Example #1) Factor out the GCF from a polynomial by dividing each term by the GCF.

a) 6n +9 b) $-c^2+4c$ c) $5-10z-5z^2$

Example #2) Factor. Verify that the factors are correct by expanding.

a) $-12x^3y - 20xy^2 - 16x^2y^2$	b) $-20c^4d - 30c^3d^2 - 25cd$
----------------------------------	--------------------------------

Example #3) Factor.

a)	$16x^2y + 24x^2y^3$	b)	7a²b -28ab + 14ab²	c)	$-16x^2y^2 + 24x^3y^3$
----	---------------------	----	--------------------	----	------------------------

Day 3 Assignment: Polynomial Practice Assignment #3 - Factoring Polynomials with a GCF

3.5 Factoring Polynomials of the form x²+bx+c and GCF (Day 4)

<u>Concept # 21-</u> 3.5 Factor trinomials with an initial GCF resulting in the form x^2 + bx + c (by method of choice) (NC) (Skill)

Factoring and multiplying/expanding are inverse processes. We can use this to factor a trinomial.

Method #1 – Using Algebra Tiles concretely and pictorially factor binomials and trinomials

Step 1 – Get a bag of algebra tiles

Step 2 – From your bag, collect tiles that represent the given polynomial

Step 3 – Rearrange the collected tiles into a rectangle (draw the rectangle)

Step 4 – Determine the dimensions of the rectangle (These are your factors)

Example #1) Factor using algebra tiles.

Method #2 – Symbolically Factor Binomials and Trinomials

Note: 1) REMEMBER TO ALWAYS LOOK TO FACTOR OUT A GCF FIRST

2) Rearrange polynomials in descending order

3) There are other methods when factoring a trinomial. If you'd like to try a different method let me know.

Example #2) Factor by guess and	check (a.k.a Window method)
\sim \sim \sim \sim \sim	

a) x²- 2x -8	b) z ² -12z+35
 b) Factor (Note: Show factoring in ascending vs descending order) 	d) Factor and verify your answer
-24 -5d +d ²	m² -7m -60

Does the order we write the terms of the binomial matter?

Example #3) Factor $-4t^2 - 16t + 128$

b) $-5h^2 - 20h + 60$

Topic 5 – Polynomials (Ch. 3.3-3.8) Outcome FP 10.5

Do you see any patterns? Did anyone find a more efficient/quicker way to factor the previous trinomials? Can you use this explanation to show how the following questions can be quickly factored?

$x^{2} + 8x + 12$	$x^{2} + 7x + 10$	$x^{2} + 8x + 15$
= (x + 6)(x + 2)	= (x + 5)(x + 2)	(x + 5)(x + 3)
q ² +6q+8	m ² +7m+12	r ² +13m+12
= (q + 4)(q + 2)	= (m + 3)(m + 4)	= (r + 12)(r + 1)
$49 + 14h + h^2$	$144 + 24x + x^2$	81+18w+w ²
= (7 + h)(7 + h)	= (12 + x)(12 + x)	= (9 + w)(9 + w)
m ² -7m+12	x ² -8m+12	u ² - 12u + 27
(m - 4)(m - 3)	(x - 6)(x - 2)	(u - 9)(u - 3)

Day 4 Assignment: Polynomial Practice Assignment #4-Factoring Polynomials of the form x2+bx+c

3.6 Factoring Polynomials ax²+bx+c and GCF (Day 5)

Concept # 22 3.6 Correctly factor using GCF and then factor a trinomial ax²+ bx + c, where a > 1 by method of choice

ALWAYS LOOK FOR A GREATEST COMMON FACTOR (GCF) BETWEEN ALL TERMS FIRST

Example #1) Factor

a) $4h^2 + 20h + 9$

b)
$$12k^2 - 22k - 70$$

c) $4g^2 + 11g + 6$

d) $18m^3 - 21m^2 - 30m$

Topic 5 – Polynomials (Ch. 3.3-3.8) Outcome FP 10.5 **Example #2) a) Evaluate** $3x^2 - 14x + 15$ when x = 2

c) Did you get the same answer for a & b? Why or why not?

Example #3) Factor

a) $x^2 - 25$ b) $4x^2 - 49$

c) $25x^2 - 16$

d) $9m^2 - 100n^2$

Can you find an easier way to factor the above "DIFFERENCE OF SQUARES" questions? What criteria must be present in order for this method to work?

Topic 5 – Polynomials (Ch. 3.3-3.8) Outcome FP 10.5

Example #4) Use your new method to factor the following. If you can't factor them - explain why?

a) $36x^2 - 25y^2$ b) $x^2 + 81$ c) $-100 + r^2$ d) $\frac{4}{9}x^2 - 25$ e) $1.21x^2 - 0.36$ f) $\frac{x^2}{16} - \frac{y^2}{49}$ g) $2x^2 - 14$ h) $81a^4 - 16b^4$ i) $49a^2b^2 - 1$

Note: A binomial is only factorable if there is a ______ or the bionomial is a

Example #5)

•

a) Create a binomial that is PRIME (Not factorable): ______

b) Create a binomial that is a difference of squares and factor it:

Day 5 Assignment: Polynomial Practice Assignment #5 - Factoring Polynomials

3.8 Factoring ALL Polynomials (Day 6)

<u>Concept # 23</u>: 3.8 Factoring using GCF and/or all of the above (including perfect square trinomials, trinomials in two variables, difference of squares)

Ex1): Factor 20r² + 70r + 60

Ex2): Factor -5h² - 20h + 60

Ex3): Factor x² + 5x + 1

Ex5): Factor x⁴ - 81y⁴

Day 6 Assignment: Polynomial Practice Assignment #6- Factoring Polynomials(All types)