Lesson Notes: Multiplying Polynomials - Monomials and Binomials (Day1)

Review: Gr. 9 Material Talk about what is a polynomial vs non polynomial? (have student brainstorm and create their own examples)

Ex./Polynomials $4 x+6,-6 x^{2}+8 x-1,3 x, 5$

Polynomial non - examples $\sqrt{x}+6($ RADICALEXPRESSION $) \frac{5}{x+6}$ or $\frac{6}{x^{2}}-8$ (rational expressions)

Vocabulary: What is a variable? What is the degree of a polynomial? Coeffcient? Constant? Binomial? Trinomial ? and monomial?

Have students create examples of monomials, binomials and trinomials. Then find the coefficients and constant .

Review what each algebra tile represents:

The terms of a polynomial can be represented by using Algebra Tiles.

These are what each tile represents Note: The x can be ANY letter!

Question \#1) Represent the following polynomials using algebra tiles
a) $3 x^{2}-4 x+2$
b) $-2 x^{2}+7$
c) $4 x^{2}-3 x+4-2 x^{2}+5 x+3$ (simplify combine like terms
and create zero pairs)

Question \#2) Solve and represent this product concretely and pictorially (using algebra tiles) Need to make a rectangle with dimension 4×3

$$
3 \times 4
$$

Concretely
(using algebra tiles or counters)

Pictorially

Symbolically

(Only using numbers and operations)

Question \#3) Using algebra tiles represent and solve these products
a) $4(3 x)$
b) $x(2 x+1)$ " to help build the rectangle place guiding tiles
c) $-4(3 x)$

" Rearrange tiles to put like terms together and combine zero pairs (rewrite your trinomial with like terms combined in simplest form)

Have students make up questions on whiteboards / paper and pass to another set of partners. Have students complete each question and pass back to check.

3.5/3.6 Multiplying Polynomials - Monomials and Binomials (Day1)

Concept \#18: 3.5/3.6 Correctly multiply two binomials (NC) (Skill)

The terms of a polynomial can be represented by using Algebra Tiles.

These are what each tile represents Note: The x can be ANY letter!

This represents the product of the constant 4 and the monomial, $3 x$. We can model the product as 4 rows of three " x " tiles.

$3 x$

We can Model 4(3x) as the area of a rectangle with dimensions 4 and $3 x$.

The expression $(2 c)(4 c)$ is the product of two monomials.
We interpret the product with algebra tiles arranged to form a rectangle with dimensions 2 c and 4 c .

We need eight c tiles to build the rectangle.
So, (2c) $(4 \mathrm{c})=8 \mathrm{c}^{2}$
Solving products of all polynomials with degree 1 or less can be represented concretely (Using algebra tiles) , pictorially (Drawing algebra tiles or rectangles) or symbolically (Using numbers and operations).

Here are three strategies to determine the product of binomials

$$
\frac{\text { Strategy 1: } \quad \text { Use algebra tiles }}{\text { Expand }(3 d+4)(4 d+2)}
$$

Make a rectangle with dimensions $3 d+4$ and $4 d+2$. Place tiles to represent each dimension, then fill in the rectangle with tiles.

The tiles that form the product are: $12 d^{2}$-tiles, 22 d-tiles, and eight 1-tiles.

So $(3 d+4)(4 d+2)=12 d^{2}+22 d+8$

Strategy 2: Area Model
 $$
\text { Expand }(h+11)(h+5)
$$

Sketch a rectangle with dimensions $h+11$ and $h+5$. Divide the rectangle into 4 smaller rectangles and calculate the area of each.

$$
\text { So, } \begin{aligned}
(h+11)(h+5) & =h^{2}+5 h+11 h+55 \quad \text { Combine like terms } \\
& =h^{2}+16 h+55
\end{aligned}
$$

Note that $(h+11)(h+5)=(h+5)(h+11)$ since both products represent the area of the same rectangle.

Strategy 3: The Distributive Property

$$
\begin{aligned}
& \text { Expand }(x-3)(2 x+1) \\
&=x(2 x+1)-3(2 x+1) \\
&(x-3)(2 x+1)=(x)(2 x)+(x)(1)+(-3)(2 x)+(-3)(1) \\
&=2 x^{2}+x-6 x-3 \\
&=2 x^{2}-5 x-3
\end{aligned}
$$

To multiply polynomials of larger degrees we can use the distributive property and exponent laws

Recall:
Exponent Law - What do you do when you are multiplying same bases?
ie. $a^{3} \times a^{4}$

You add the exponents

$$
X^{m} X^{n}=X^{m+n}
$$

a) $-3 x(2 x+2)$
b) $5 m(-2 m-3)$
c) $-5 x^{2} y(2 x+3 y)$
d) $\quad 3 m^{2} n^{3} p^{2}\left(-5 m^{2} n+2 m p^{3}-4 n^{2} p^{6}\right)$

Example \#2) Multiply two binomials. Expand and simplify. Use algebra tiles and sketch the tiles you used.
a) $(c+4)(c+2)$
b) $(x-4)(x+2)$

Example \#3) Expand and simplify. Use the distributive property.
a) $\quad(3 d+4)(4 d+2)$
b) $\quad(-2 g+8)(7-3 g)$
c) $(8-b)(3-b)$

3.5/3.6 Multiplying Polynomials - Monomials, Binomials and Trinomials (Dav 2)

Concept \#19: 3.7 Correctly multiply a binomial by a trinomial and a trinomial by a trinomial (NC)(Skill)
The distributive property can be used to perform any polynomial multiplication. Each term of one polynomial must be multiplied by each term of the other polynomial.

Example \#1) Using the Distributive Property to Multiply Two Polynomials (NO CALCULATORS) Expand and simplify
a) $(2 h+5)\left(h^{2}+3 h-4\right)$
b) $\left(-3 f^{2}+3 f-2\right)\left(4 f^{2}-f-6\right)$

Example \#2) Multiplying Polynomials in More Than One Variable Expand and Simplify

Check solution for $t=2$ and $r=3$

Example \#3) Expand and Simplify
a) $(x+5)^{3}$

Example \#4) Add or subtract
a) $(5 a-8)-(2 a+3)$
b) $\left(2 x^{2}+6 x+5\right)+\left(-4 x^{2}-3 x+7\right)$
c) $\left(3 \mathrm{a}^{2}-2 \mathrm{a}+6\right)-\left(-2 \mathrm{a}^{2}+7 \mathrm{a}-9\right)$

Example \#5) Simplifying Sums and Differences of Polynomial Products Note: Use order of operations. Multiply before adding and subtracting. Then combine like terms. Expand and Simplify
a) $(3 x-1)(2 x-4)-(3 x+2)^{2}$
b) $2 b(2 b-c)(b+c)$

3.3 Greatest Common Factors(GCF) of Polynomials (Day3)

Greatest common factor of variables: The smallest common exponent of each variable in each term Ex. $x^{5} y^{3} a n d x^{8} y$ The GCF $=x^{5} y$ between the two monomials

Note: Take a negative GCF out if the first term is negative.

Concept \#20: 3.3 Correctly factor polynomials with a GCF (NC)(Skill)

Example \#1) Factor out the GCF from a polynomial by dividing each term by the GCF.
a) $6 n+9$
b) $-c^{2}+4 c$
c) $5-10 z-5 z^{2}$

Example \#2) Factor. Verify that the factors are correct by expanding.
a) $-12 x^{3} y-20 x y^{2}-16 x^{2} y^{2}$
b) $-20 c^{4} d-30 c^{3} d^{2}-25 c d$

Example \#3) Factor.

a) $16 x^{2} y+24 x^{2} y^{3}$
b) $7 a^{2} b-28 a b+14 a b^{2}$
c) $\quad-16 x^{2} y^{2}+24 x^{3} y^{3}$

3.5 Factoring Polynomials of the form $x^{2}+b x+c$ and GCF (Day 4)

Concept \# 21-3.5 Factor trinomials with an initial GCF resulting in the form $x^{2}+b x+c$ (by method of choice) (NC) (Skill)

```
(2x+3)(x+1)< FACTORS
2\mp@subsup{x}{}{2}+5x+3
    EXPANDED FORM
```

Factoring and multiplying/expanding are inverse processes. We can use this to factor a trinomial.

Method \#1 - Using Algebra Tiles concretely and pictorially factor binomials and trinomials
Step 1 - Get a bag of algebra tiles
Step 2 - From your bag, collect tiles that represent the given polynomial
Step 3 - Rearrange the collected tiles into a rectangle (draw the rectangle)
Step 4 - Determine the dimensions of the rectangle (These are your factors)
Example \#1) Factor using algebra tiles.
a) $x^{2}+3 x$
b) $2 x^{2}+4 x$
c) $x^{2}+5 x+4$

d) $2 x^{2}+7 x+6$
\qquad
e) $x^{2}+x-2$

Method \#2 - Symbolically Factor Binomials and Trinomials

Note: 1) REMEMBER TO ALWAYS LOOK TO FACTOR OUT A GCF FIRST

2) Rearrange polynomials in descending order
3) There are other methods when factoring a trinomial. If you'd like to try a different method let me know.

Example \#2) Factor by guess and check (a.k.a Window method)
a) $x^{2}-2 x-8$
b) Factor (Note: Show factoring in ascending vs descending order)
$-24-5 d+d^{2}$
b) $z^{2}-12 z+35$
d) Factor and verify your answer

$$
m^{2}-7 m-60
$$

Does the order we write the terms of the binomial matter?
Example \#3) Factor $-4 t^{2}-16 t+128$
b) $-5 h^{2}-20 h+60$ Do you see any patterns? Did anyone find a more efficient/quicker way to factor the previous trinomials? Can you use this explanation to show how the following questions can be quickly factored?

$$
\begin{array}{lll}
x^{2}+8 x+12 & x^{2}+7 x+10 & x^{2}+8 x+15 \\
=(\mathbf{x}+6)(\mathbf{x}+2) & =(\mathbf{x}+5)(\mathbf{x}+2) & (\mathbf{x}+5)(\mathbf{x}+3) \\
& & \\
q^{2}+6 q+8 & m^{2}+7 m+12 & r^{2}+13 m+12 \\
=(q+4)(q+2) & =(m+3)(m+4) & =(\mathbf{r}+12)(\mathrm{r}+1) \\
& & \\
49+14 h+h^{2} & 144+24 x+x^{2} & 81+18 w+w^{2} \\
=(7+h)(7+h) & =(12+\mathbf{x})(12+\mathbf{x}) & =(9+w)(9+w) \\
& & \\
m^{2}-7 m+12 & x^{2}-8 m+12 & u^{2}-12 u+27 \\
(m-4)(m-3) & (\mathbf{x}-6)(\mathbf{x}-2) & (u-9)(u-3)
\end{array}
$$

3.6 Factoring Polynomials $a x^{2}+b x+c$ and GCF (Day 5)

Concept \# 22 3.6 Correctly factor using GCF and then factor a trinomial $a x^{2}+b x+c$, where $a>1$ by method of choice

ALWAYS LOOK FOR A GREATEST COMMON FACTOR (GCF) BETWEEN ALL TERMS FIRST

Example \#1) Factor

a) $4 h^{2}+20 h+9$
b) $12 k^{2}-22 k-70$
c) $4 g^{2}+11 g+6$
d) $18 m^{3}-21 m^{2}-30 m$
c) Did you get the same answer for $\mathrm{a} \& \mathrm{~b}$? Why or why not?

Example \#3) Factor

a) $x^{2}-25$
b) $4 x^{2}-49$
c) $25 x^{2}-16$
d) $9 m^{2}-100 n^{2}$

Can you find an easier way to factor the above "DIFFERENCE OF SQUARES" questions? What criteria must be present in order for this method to work?
a) $36 x^{2}-25 y^{2}$
b) $x^{2}+81$
c) $-100+r^{2}$
d) $\frac{4}{9} x^{2}-25$
e) $1.21 x^{2}-0.36$
f) $\frac{x^{2}}{16}-\frac{y^{2}}{49}$
g) $2 x^{2}-14$
h) $81 a^{4}-16 b^{4}$
i) $49 a^{2} b^{2}-1$

Note: A binomial is only factorable if there is a \qquad or the bionomial is a

Example \#5)

a) Create a binomial that is PRIME (Not factorable): \qquad
b) Create a binomial that is a difference of squares and factor it:

3.8 Factoring ALL Polynomials (Day 6)

Concept \# 23: 3.8 Factoring using GCF and/or all of the above (including perfect square trinomials, trinomials in two variables, difference of squares)

Ex1): Factor $\mathbf{2 0 r}{ }^{\mathbf{2}}+\mathbf{7 0 r}+\mathbf{6 0}$

Ex2): Factor $\mathbf{- 5} \mathbf{h}^{\mathbf{2}} \mathbf{- 2 0 h} \mathbf{+ 6 0}$

Ex3): Factor $x^{2}+5 x+1$

Ex5): Factor $x^{4}-81 y^{4}$

