Math Pre-Calc 20 Final Review (Solutions)

Chp1 Sequences and Series

\#1. Write the first 4 terms of each sequence:
a) $t_{1}=3 \quad d=-2$
b) $t_{n}=3^{n}$
$3,1,-1,-3$
$3^{1}, 3^{2}, 3^{3}, 3^{4} \quad$ OR $3,9,27,81$
\#2. Find the value of the term indicated:
a) $1,3,9, \ldots, t_{7}$
b) $17,13,9, \ldots, t_{25}$

$$
\begin{aligned}
& t_{n}=a r^{n-1} \\
& t_{7}=1(3)^{7-1} \\
& t_{7}=1\left(3^{6}\right) \\
& t_{7}=729
\end{aligned}
$$

$$
t_{n}=a+d(n-1)
$$

$$
t_{25}=17-4(25-1)
$$

$$
t_{25}=17-4(24)
$$

$$
\mathrm{t}_{25}=17-96
$$

$$
\mathrm{t}_{25}=-79
$$

\#3. Find the number of terms in each sequence:
a) $\frac{1}{2}, \frac{7}{8}, \frac{5}{4}, \ldots, \frac{31}{2}$
b) $-5,-10,-20, \ldots,-10240$
$\frac{4}{8}, \frac{7}{8}, \frac{10}{8}, \ldots, \frac{124}{8}$
$t_{n}=a r^{n-1} \quad r=\frac{-10}{-5}=2$
$\mathrm{t}_{\mathrm{n}}=\mathrm{a}+\mathrm{d}(\mathrm{n}-1)$
$-10240=-5(2)^{n-1}$
$\frac{124}{8}=\frac{4}{8}+\frac{3}{8}(\mathrm{n}-1)$
$\frac{-10240}{-5}=\frac{-5(2)^{n-1}}{-5}$
$124=4+3(n-1)$
$2048=2^{n-1}$
$124=4+3 n-3$
$2^{11}=2^{n-1}$
$124=1+3 n$
$11=n-1$
$123=3 n$
$\mathrm{n}=12$
$\mathrm{n}=41$
\#4. Write the general term $\left(t_{n}\right)$ for each sequence:
a) $-8,4,-2, \ldots$
b) $-5,-10,-15, \ldots$

$$
\begin{aligned}
& t_{n}=a+d(n-1) \\
& t_{n}=-5+-5(n-1) \\
& t_{n}=-5-5 n+5 \\
& t_{n}=-5 n
\end{aligned}
$$

\#5. The $20^{\text {th }}$ term of an arithmetic sequence is 12 and the $32^{\text {nd }}$ term is 48 . Find the first term and the common difference.

Note: Between $20^{\text {th }}$ and $32^{\text {nd }}$ terms, there are 12 common differences.

$$
\begin{array}{ll}
48=12+12 d & t_{n}=a+d(n-1) \\
36=12 d & 48=a+3(32-1) \\
d=3 & 48=a+93 \\
& a=-45
\end{array}
$$

\#6. Write out the first three terms of the geometric sequence whose fifth term is 48 and whose seventh term is 192.
Note: Between $5^{\text {th }}$ and $7^{\text {th }}$ terms, there are 2 common ratios.
$192=48 r^{2}$
$t_{n}=a r^{n-1}$
$4=r^{2}$
$r=2$ or -2
$48=a(2)^{5-1}$ or $\quad 48=a(-2)^{5-1}$
$48=a(16) \quad 48=a(16)$
$\mathrm{a}=3$
a = 3
$1^{\text {st }} 3$ terms==>
3, 6, 12
or
3, -6, 12
\#7. Find the sum of each series:
a) $100+90+80+\ldots+-200$
b) $3+6+12+\ldots+59$
$\begin{array}{ll}\text { Find } n \text { first. } & \\ t_{n}=a+d(n-1) & S_{n}=\frac{n}{2}\left(a+t_{n}\right) \\ -200=100-10(n-1) & \\ -200=100-10 n+10 & S_{31}=\frac{31}{2}(100-200) \\ -200=110-10 n & S_{31}=15.5(-100) \\ -310=-10 n & S_{31}=-1550 \\ n=31 & \end{array}$.

$$
\begin{aligned}
& n=9 \quad r=2 \text { (so use the } r-1 \text { form) } \\
& S_{n}=\frac{a\left(r^{n}-1\right)}{r-1} \\
& S_{9}=\frac{3\left(2^{9}-1\right)}{2-1}=\frac{3(511)}{1}=1533
\end{aligned}
$$

\#8. Find the sum of the infinite geometric series:
a) $2+1+\frac{1}{2}+\ldots$
b) $4+\frac{20}{3}+\frac{100}{9} \ldots$
$r=1 / 2$ so the Sum is possible.

$$
\mathrm{S}_{\infty}=\frac{\mathrm{a}}{1-\mathrm{r}}=\frac{2}{1-\frac{1}{2}}=\frac{2}{\frac{1}{2}}=2 \div \frac{1}{2}=2 \times 2=4
$$

$$
r=\frac{20}{3} \div 4=\frac{20}{3} \times \frac{1}{4}=\frac{20}{12}=\frac{5}{3}
$$

Since $r>1$, the sum is not possible.
\#9. Suppose that each year a tree grow 90% as much as it did the year before. If the tree was 2.35 m tall after the $1^{\text {st }}$ year, how tall would it eventually get?

This is an infinite sum. 2.35, . 9×2.35, etc. So the ratio $r=.9$
$\mathrm{S}_{\infty}=\frac{\mathrm{a}}{1-\mathrm{r}}=\frac{2.35}{1-.9}=\frac{2.35}{.1}=23.5 \quad$ The tree would grow to 23.5 m in height.
\#10. A man walks 5 km in week1, 8 km in week2, 11 km in week3 and so forth. How many km would he walk in total over 10 weeks?
The series would be $5+8+11+\ldots \quad$ with $n=10$

$$
\begin{aligned}
& S_{n}=\frac{\mathrm{n}}{2}[2 \mathrm{a}+\mathrm{d}(\mathrm{n}-1)] \\
& \mathrm{S}_{10}=\frac{10}{2}[2(5)+3(10-1)]=5[10+27]=5(37)=185 \quad \text { He would walk } 185 \mathrm{~km} .
\end{aligned}
$$

Chp2 Trig

\#1. Sketch the angle and name its reference angle: 242°

The reference angle is 62°.
\#2. Find the exact value of the following without using a calculator:
a) $\operatorname{Cos} 210^{\circ}$
b) $\operatorname{Sin} 315^{\circ}$
(242-180)

Ref angle is 45° (360-315) in quadrant 4.
Sin is negative in quad 4.
$\operatorname{Sin} 45^{\circ}=\frac{1}{\sqrt{2}}$ So $\operatorname{Sin} 315^{\circ}=-\frac{1}{\sqrt{2}}=-\frac{\sqrt{2}}{2}$
Draw a $45,45,90$ triangle to help find this.

1
\#3. A point $\mathrm{P}(4,-3)$ lies on the terminal arm of an angle Θ in standard position. Determine the exact trigonometric ratios for $\operatorname{Sin} \theta, \operatorname{Cos} \theta$ and $\operatorname{Tan} \theta$.
$x^{2}+y^{2}=r^{2} \quad x=4 y=-3 \quad(4)^{2}+(-3)^{2}=r^{2} \quad 25=r^{2} \quad r=5 \quad(r$ is always positive)
$\operatorname{Sin} \theta=\frac{y}{r}=-\frac{3}{5}$
$\operatorname{Cos} \theta=\frac{x}{r}=\frac{4}{5}$
$\operatorname{Tan} \Theta=\frac{y}{x}=-\frac{3}{4}$

\#4. If $\operatorname{Sin} \theta=\frac{5}{13}, \theta$ is in Q 2 , find the $\operatorname{Cos} \theta$ and $\operatorname{Tan} \theta$.
$\operatorname{Sin} \theta=\frac{y}{r} \quad y=5 \quad r=13 \quad x^{2}+y^{2}=r^{2} \quad x^{2}+(5)^{2}=(13)^{2} \quad x^{2}+25=169 \quad x^{2}=144 \quad x= \pm 12$

In quad 2, $\operatorname{Cos} \theta$ and $\operatorname{Tan} \theta$ are both neg, so $\operatorname{Cos} \theta=\frac{\mathrm{x}}{\mathrm{r}}=-\frac{12}{13} \quad \operatorname{Tan} \theta=\frac{\mathrm{y}}{\mathrm{x}}=-\frac{5}{12}$
\#5. Find the quadrant where $\operatorname{Cos} \theta<0$ and $\operatorname{Tan} \Theta>0$.

Cos neg in Q2 and Q3
Tan pos in Q1 and Q3
So Q3 is where Θ must be.

\#6. Solve for θ if $0^{\circ} \leq \Theta \leq 360^{\circ}$.
$\sin \theta=-\frac{\sqrt{3}}{2} \quad \theta_{R}=60^{\circ} \quad$ (See diagram)
Sin is neg in Q3 and Q4.

$$
\theta=180+60=\mathbf{2 4 0 ^ { \circ }} \text { or } \theta=360-60=\mathbf{3 0 0} .
$$

\#7. Find each measure indicated:

missing angle is 75° (180-64-41)

$$
\frac{12}{\operatorname{Sin} 64}=\frac{x}{\operatorname{Sin} 75}
$$

$$
x=\frac{12(\operatorname{Sin} 75)}{\operatorname{Sin} 64}=12.9
$$

b)

$$
\begin{aligned}
& c^{2}=a^{2}+b^{2}-2 a b \operatorname{Cos} C \\
& x^{2}=9^{2}+7^{2}-2(9)(7) \operatorname{Cos} 110^{\circ} \\
& x^{2}=173.09 \\
& x=13.16
\end{aligned}
$$

c)

$\frac{10}{\operatorname{Sin} x}=\frac{12}{\operatorname{Sin} 65}$
$12 \operatorname{Sin} x=10(\operatorname{Sin} 65)$
$\operatorname{Sin} \mathrm{x}=\frac{10(\operatorname{Sin} 65)}{12}$
$x=49^{\circ}$
\#8. Solve each triangle $\triangle \mathrm{ABC}$.
a) $B=27^{\circ}, A=112^{\circ}, b=5$
b) $a=6, b=7, c=8$

$$
C=180-27-112=41^{\circ}
$$

$\frac{\mathrm{a}}{\operatorname{Sin} 112}=\frac{5}{\operatorname{Sin} 27} \quad \frac{\mathrm{c}}{\operatorname{Sin} 41}=\frac{5}{\operatorname{Sin} 27}$

$$
a=10.2 \quad c=7.2
$$

$$
\begin{aligned}
& c^{2}=a^{2}+b^{2}-2 a b \operatorname{Cos} C \\
& 8^{2}=6^{2}+7^{2}-2(6)(7) \operatorname{Cos} C \\
& 64=85-84 \operatorname{Cos} C \\
& -21=-84 \operatorname{Cos} C \\
& .25=\operatorname{Cos} C
\end{aligned}
$$

$$
C=75.5^{\circ}
$$

$$
\mathrm{A}=180-75.5-57.9=46.6^{\circ}
$$

\#9. Determine how many $A B C$ triangles satisfy the following conditions.
a) $\angle A=65^{\circ}, a=9.1 \mathrm{~cm}$, and $b=10.7 \mathrm{~cm}$
$h=b \operatorname{Sin} A$
$h=10.7 \operatorname{Sin} 65^{\circ}$
h $=9.7$

Since " a " is the smallest in size, we can draw "0" different triangles.
b) $\angle \mathrm{A}=24^{\circ}, \mathrm{a}=5$, and $\mathrm{b}=7$
$h=b \operatorname{Sin} A$
$h=7 \operatorname{Sin} 24^{\circ}$
$h=2.8$
Since " h " is the smallest in size, we can draw " 2 " different triangles.
\#10. Two boats leave a dock at the same time. Each travels in a different direction. The angle between their courses is 54°. If one boat travels 80 km and the other travels 100 km , how far apart are they?
$x^{2}=100^{2}+80^{2}-2(100)(80) \cos 54^{\circ}$
$x^{2}=16400-9404.6$
$x^{2}=6995.4$
$x=83.6$
They are 83.6 km apart.

Chp 3 Quadratic Functions
\#1. Find the vertex of each quadratic:
a) $y=3 x^{2}$
b) $y+3=-\frac{1}{2} x^{2}$
c) $y=(x+1)^{2}+2$
vertex is $(0,0)$
vertex is ($0,-3$)
vertex is $(-1,2)$
\#2. Write each of the following in vertex-graphing form by completing the square:
a) $y=x^{2}+4 x$
$y=x^{2}+4 x+4-4$
b) $y=x^{2}+x-1$
c) $y=-3 x^{2}+12 x-2$
$y+1=x^{2}+1 x$
$y=-3 x^{2}+12 x$
$y+1+1 / 4=x^{2}+x+1 / 4$
$y+2=-3\left(x^{2}-4 x\right)$
$y=(x+2)^{2}-4$

$$
\begin{aligned}
& y+1+1 / 4=(x+1 / 2)^{2} \\
& y=(x+1 / 2)^{2}-5 / 4
\end{aligned}
$$

$$
y+2-12=-3\left(x^{2}-4 x+4\right)
$$

$$
y-10=-3\left(x^{2}-4 x+4\right)
$$

$$
y=-3(x-2)^{2}+10
$$

\#3. Answer the following questions for each quadratic function:
a) vertex b) equation of the axis of symmetry c) concavity (faces up or down)
d) maximum or minimum value e) domain and range f) x and y intercepts
g) sketch the graph
i) $y=-3(x+2)^{2}+3$

Vertex is $(-2,3)$
Eqn of A.O.S. is $x=-2$
Faces Down (a is neg)
Max Value of 3
Domain: $x \in R$
Range: $y \leq 3$

x-intercepts $\quad y$-intercepts

$$
0=-3(x+2)^{2}+3 \quad y=-3(0+2)^{2}+3
$$

$$
-3=-3(x+2)^{2} \quad y=-3(4)+3
$$

$$
1=(x+2)^{2} \quad y=-9
$$

$$
\pm \sqrt{1}=x+2
$$

$$
\pm 1=x+2 \quad y \text { int is }-9
$$

$$
1=x+2 \quad-1=x+2
$$

$$
-1=x \quad-3=x
$$

x ints are $\{-1,-3\}$

ii) $y=x^{2}+4 x+3$

$$
\text { Vertex is }(-2,-1) \quad x \text {-intercepts }
$$

Complete the square:
$y=x^{2}+4 x+4-4+3$
$y=(x+2)^{2}-1$
(or use $\mathrm{p}=-\frac{\mathrm{b}}{2 \mathrm{a}}$)

Eqn of A.O.S. is $x=-2 \quad 0=x^{2}+4 x+3$
Faces Up (a is pos) $\quad 0=(x+3)(x+1)$
Min Value of $-1 \quad x$ ints are $\{-3,-1\}$
Domain: $x \in R$
Range: $y \geq-1$

y-intercepts
$y=0^{2}+4(0)+3$
y int is 3
\#4. Write a quadratic equation in vertex graphing form for each of the following:
a) $\mathrm{a}=2$ vertex is $(-1,2)$
b) vertex is $(3,2)$ and passes through the point $(2,-1)$
$y=a(x-p)^{2}+q$

$$
y=2(x+1)^{2}+2
$$

$$
\begin{aligned}
& y=a(x-p)^{2}+q \quad p=3, q=2, x=2, y=-1 \\
& -1=a(2-3)^{2}+2 \\
& -1=a(1)+2 \\
& -3=a
\end{aligned}
$$

\#5. Write the new equation of the parabola $y=x^{2}$ after the following: (3 marks)
a) a horizontal translation 2 units to the left and a vertical translation 1 unit up $y=a(x-p)^{2}+q \quad a=1, p=-2, q=1$

$$
y=(x+2)^{2}+1
$$

b) a vertical translation 3 units down and a reflection across the x-axis
$y=a(x-p)^{2}+q \quad a=-1, p=0, q=-3 \quad y=-1 x^{2}-3$
c) a multiplication of the y-values by -2 and then a horizontal translation 1 unit to the right $y=a(x-p)^{2}+q \quad a=-2, p=1, q=0 \quad y=-2(x-1)^{2}$
\#6. A bridge has the shape of a parabola. Its width is 50 m and its height is 12 m . Find the quadratic equation for this bridge.
$y=a(x-p)^{2}+q \quad p=0, q=12, x=25, y=0$
$0=a(25-0)^{2}+12$
$0=a(625)+12$

$-12=625 a \quad a=-\frac{12}{625} \quad y=-\frac{12}{625} x^{2}+12$
\#7. The height, " h ", in metres, of a flare " t " seconds after it is fired into the air is given by the equation $h(t)=-4.9 t^{2}+61.25 t$. At what height is the flare at its maximum height? How many seconds after being shot does this occur?
$\mathrm{p}=-\frac{\mathrm{b}}{2 \mathrm{a}}=-\frac{61.25}{2(-4.9)}=6.25 \quad \mathrm{q}=-4.9(6.25)^{2}+61.25(6.25)=191.4 \quad$ Vertex is $(6.25,191.4)$
Max height is at 191.4 m . It happens 6.25 seconds after being shot.
\#8. A farmer has 100 m of fencing material to enclose a rectangular field adjacent to a river. No fencing is required along the river. Find the dimensions of the rectangle that will make its area a maximum. What is the maximum Area? (Hint: a diagram of the situation is given below)

$$
\begin{aligned}
& A=x(100-2 x) \\
& A=100 x-2 x^{2} \text { or } A=-2 x^{2}+100 x
\end{aligned}
$$

$$
\mathrm{p}=-\frac{\mathrm{b}}{2 \mathrm{a}}=-\frac{100}{2(-2)}=25
$$

$q=-2(25)^{2}+100(25)=1250$ Vertex is $(25,1250)$
$100-2(25)=50$ So the rectangle is 25 m by 50 m . The maximum area is $1250 \mathrm{~m}^{2}$.

Chp 4 Quadratic Equations

\#1. Solve the quadratic equations by factoring:
a) $3 x^{2}-36 x=0$
b) $2 x^{2}-7 x-15=0$
c) $6 x^{2}-11 x+3=24$
$3 x(x-12)=0$
$(2 x+3)(x-5)=0$
$6 x^{2}-11 x+3=24$
$x=0 \quad x=12$
$x=\{0,12\}$
$x=\left\{-\frac{3}{2}, 5\right\}$
$6 x^{2}-11 x-21=0$
$(6 x+7)(x-3)=0$
$x=\left\{-\frac{7}{6}, 3\right\}$
\#2. Solve the quadratic equations by completing the square: (Write answers in Exact Form)
a) $x^{2}-6 x+5=0$
$x^{2}-6 x=-5$
b) $x^{2}+4 x+1=0$
$x^{2}+4 x=-1$
c) $3 x^{2}-x-2=0$
$3 x^{2}-x=2$
$x^{2}-6 x+9=-5+9$
$(x-3)^{2}=4$
$x^{2}+4 x+4=-1+4$
$x-3= \pm \sqrt{4}$
$x-3= \pm 2$
$x-3=2$ or $x-3=-2$
$x=5$
$x=1$
$(x+2)^{2}=3$
$\mathrm{x}^{2}-\frac{1}{3} \mathrm{x}=\frac{2}{3}$
$x+2= \pm \sqrt{3}$
$x=-2 \pm \sqrt{3}$
$\mathrm{x}^{2}-\frac{1}{3} \mathrm{x}+\frac{1}{36}=\frac{2}{3}+\frac{1}{36}$
$\{-2 \pm \sqrt{3}\}$
$\{5,1\}$

$$
\begin{aligned}
& \left(\mathrm{x}-\frac{1}{6}\right)^{2}=\frac{25}{36} \\
& \mathrm{x}-\frac{1}{6}= \pm \sqrt{\frac{25}{36}} \\
& \mathrm{x}=\frac{1}{6} \pm \frac{5}{6} \quad\left\{\frac{6}{6},-\frac{4}{6}\right\}=\left\{1,-\frac{2}{3}\right\}
\end{aligned}
$$

\#3. Solve the quadratic equations using the quadratic formula: (Write answers in Exact Form) a) $x^{2}+4 x-96=0 \quad a=1, b=4, c=-96$

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-4 \pm \sqrt{(4)^{2}-4(1)(-96)}}{2(1)}=\frac{-4 \pm \sqrt{400}}{2}=\frac{-4 \pm 20}{2}=-2 \pm 10
$$

b) $3 x^{2}=4$ (Hint: Same as $3 x^{2}-0 x-4=0$) $a=3, b=0, c=-4$

$$
\mathrm{x}=\frac{-\mathrm{b} \pm \sqrt{\mathrm{b}^{2}-4 \mathrm{ac}}}{2 \mathrm{a}}=\frac{0 \pm \sqrt{(0)^{2}-4(3)(-4)}}{2(3)}=\frac{ \pm \sqrt{48}}{6}=\frac{ \pm 4 \sqrt{3}}{6}=\frac{ \pm 2 \sqrt{3}}{3} \quad\left\{\frac{ \pm 2 \sqrt{3}}{3}\right\}
$$

\#4. Find the zeros of the function $f(x)=x^{2}-10 x+16$.
$0=x^{2}-10 x+16$
$0=(x-8)(x-2)$
$x=8 \quad x=2$ The zero's are 8 and 2. \{Note: The zeros are the same as x-intercepts!\}
\#5. Find the quadratic equation with the roots of $\left\{\frac{1}{2},-\frac{2}{3}\right\}$
$(2 x-1)(3 x+2)=0$
$6 x^{2}+x-2=0$
\#6. Find the discriminant and state the nature of the roots:
a) $x^{2}-4 x-5=0$
b) $x^{2}=-9$
c) $x^{2}+2 x+1=0$

$$
\begin{aligned}
& a=1 \quad b=-4 \quad c=-5 \\
& \text { Discr }=b^{2}-4 a c \\
& \operatorname{Discr}=(-4)^{2}-4(1)(-5) \\
& \text { Discr }=16+20=36
\end{aligned}
$$

$$
x^{2}+9=0 \quad a=1 \quad b=0 \quad c=9
$$

$$
a=1 \quad b=2 \quad c=1
$$

Discr $=b^{2}-4 a c$
Discr $=b^{2}-4 a c$
Discr $=(0)^{2}-4(1)(9)$
Discr $=(2)^{2}-4(1)(1)$
Discr $=0-36=-36$
Discr $=4-4=0$
So there are $\mathbf{2}$ roots.
So there are $\mathbf{0}$ roots.
So there is $\mathbf{1}$ root.
\#7. The hypotenuse of a right triangle is 13 . If the sum of the legs is 17 , find the legs. (Hint: Let one leg be x and the other is therefore $17-x$...since the sum is 17 .)

$$
\begin{array}{ll}
a^{2}+b^{2}=c^{2} & \\
x^{2}+(17-x)^{2}=13^{2} & (17-x)(17-x)=289-17 x-17 x+x^{2} \\
x^{2}+289-34 x+x^{2}=169 & \\
2 x^{2}-34 x+120=0 & \\
2\left(x^{2}-17 x+60\right)=0 & \\
(x-12)(x-5)=0 & \\
x=12 \quad x=5 & \text { The legs are } 5 \text { and } 12 .
\end{array}
$$

\#8. If $h(t)=5 t^{2}-30 t+45$, find t when $h=20$. (Hint: $\left.20=5 t^{2}-30 t+45\right)$
$20=5 t^{2}-30 t+45$
$0=5 \mathrm{t}^{2}-30 \mathrm{t}+25$
$0=5\left(t^{2}-6 t+5\right)$
$0=(t-5)(t-1)$
$t=5 \quad t=1 \quad\{5,1\}$

Chp 5 Radicals

\#1. Simplify:
a) $\sqrt{150}$
b) $\sqrt[3]{32 x^{5}}$
c) $\sqrt[4]{32 x^{9} y^{6}}$
$=\sqrt{25} \sqrt{6}$
$=\sqrt[3]{8 \mathrm{x}^{3}} \sqrt[3]{4 \mathrm{x}^{2}}$
$=\sqrt[4]{16 x^{8} y^{4}} \sqrt[4]{2 x y y^{2}}$
$=5 \sqrt{6}$
$=2 x \sqrt[3]{4 x^{2}}$
$=2 x^{2} y \sqrt[4]{2 x y^{2}}$
\#2. Change each mixed radical into an entire radical:
a) $4 \sqrt{3}$
b) $2 x \sqrt[3]{3 x^{2}}$
$=\sqrt{16} \sqrt{3}$
$=\sqrt[3]{8 x^{3}} \sqrt[3]{3 x^{2}}$
$=\sqrt{48}$

$$
=\sqrt[3]{24 x^{5}}
$$

Squares	Cubes	Fourths
4	8	16
9	27	64
16	64	81
25	125	625
36	216	x^{4}
49	x^{3}	x^{8}
64	x^{6}	
81		
100		
x^{2}		
x^{4}		

\#3. Simplify:
a) $5 \sqrt{2}-6 \sqrt{3}+7 \sqrt{2}-\sqrt{3}$
b) $\sqrt{108}-2 \sqrt{27}-\sqrt{40}-5 \sqrt{160}$
$=12 \sqrt{2}-7 \sqrt{3}$

$$
=\sqrt{36} \sqrt{3}-2 \sqrt{9} \sqrt{3}-\sqrt{4} \sqrt{10}-5 \sqrt{16} \sqrt{10}
$$

$$
=6 \sqrt{3}-6 \sqrt{3}-2 \sqrt{10}-20 \sqrt{10}
$$

c) $3 \sqrt[3]{54}+2 \sqrt[3]{128}$

$$
=-22 \sqrt{10}
$$

$$
\begin{aligned}
& =3 \sqrt[3]{27} \sqrt[3]{2}+2 \sqrt[3]{64} \sqrt[3]{2} \\
& =9 \sqrt[3]{2}+8 \sqrt[3]{2} \\
& =17 \sqrt[3]{2}
\end{aligned}
$$

\#4. Multiply (Expand) the following and simplify:
a) $(\sqrt{6})(\sqrt{2})$
b) $(3 \sqrt{2 x})^{2}$
c) $\left(\sqrt[3]{4 x^{2}}\right)^{2}$
$=\sqrt{12}$
$=9 \sqrt{4 x^{2}}$
$=2 \sqrt{3}$

$$
\begin{aligned}
& =9(2 x) \\
& =18 x
\end{aligned}
$$

$$
\begin{aligned}
& =\sqrt[3]{16 x^{4}} \\
& =\sqrt[3]{8 x^{3}} \sqrt[3]{2 x} \\
& =2 x \sqrt[3]{2 x}
\end{aligned}
$$

Recall:

d) $(2 x \sqrt{3 y})\left(3 x \sqrt{6 y^{3}}\right)$
e) $3 \sqrt{2}(\sqrt{2}+\sqrt{3})$
f) $(3 \sqrt{2}-2 \sqrt{5})^{2}$
$\sqrt{\text { num }} \sqrt{\text { num }}=$ num

$$
=6 x^{2} \sqrt{18 y^{4}}
$$

$$
=3(2)+3 \sqrt{6}
$$

$$
=(3 \sqrt{2}-2 \sqrt{5})(3 \sqrt{2}-2 \sqrt{5})
$$

$$
=6 x^{2} \sqrt{9 y^{4}} \sqrt{2}
$$

$$
=6 x^{2} 3 y^{2} \sqrt{2}
$$

$$
=18 x^{2} y^{2} \sqrt{2}
$$

g) $(2+\sqrt{x})(3-\sqrt{x})$

$$
\begin{aligned}
& =6-2 \sqrt{x}+3 \sqrt{x}-x \\
& =6-x+\sqrt{x}
\end{aligned}
$$

\#5. Divide the following and be sure to rationalize all denominators:
a) $\frac{3 \sqrt{6}}{6 \sqrt{2}}$
b) $\frac{\sqrt{2}}{\sqrt{10}}$
c) $\frac{3 \sqrt{2}}{2 \sqrt{3}}$
d) $\frac{3 x}{\sqrt{2 x}}$
$=\frac{\sqrt{3}}{2}$
$=\frac{\sqrt{1}}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}}=\frac{\sqrt{5}}{5}$
$\frac{3 \sqrt{2}}{2 \sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}}=\frac{3 \sqrt{6}}{2(3)}=\frac{\sqrt{6}}{2}$
$\frac{3 \mathrm{x}}{\sqrt{2 \mathrm{x}}} \cdot \frac{\sqrt{2 \mathrm{x}}}{\sqrt{2 \mathrm{x}}}=\frac{3 \mathrm{x} \sqrt{2 \mathrm{x}}}{2 \mathrm{x}}=\frac{3 \sqrt{2 \mathrm{x}}}{2}$
e) $\frac{3 \sqrt{3}-\sqrt{2}}{2 \sqrt{2}}$
f) $\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}$
g) $\frac{2}{\sqrt[3]{9}}$
$\begin{aligned}=\frac{3 \sqrt{3}-\sqrt{2}}{2 \sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}}=\frac{3 \sqrt{6}-2}{4} & =\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}} \cdot \frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}+\sqrt{3}} \\ & =\frac{5+\sqrt{15}+\sqrt{15}+3}{5-3}=\frac{8+2 \sqrt{15}}{2}=4+\sqrt{15}\end{aligned}$
$=\frac{2}{\sqrt[3]{9}} \cdot \frac{\sqrt[3]{3}}{\sqrt[3]{3}}=\frac{2 \sqrt[3]{3}}{3}$
\#6. Solve the radical equations:
a) $\sqrt{3 x-2}=7$
b) $6-2 \sqrt{x+7}=-2$
c) $\sqrt{2 x+5}=x-5$
$3 x-2=49$
$-2 \sqrt{x+7}=-8$
$2 x+5=(x-5)^{2}$
$3 \mathrm{x}=51$
$\mathrm{x}=17$
$X=\{17\}$
$\sqrt{x+7}=4$
$x+7=16$
$x=9$
$X=\{9\}$
$2 \mathrm{x}+5=\mathrm{x}^{2}-10 \mathrm{x}+25$
$0=x^{2}-12 x+20$
$x=\{$
$0=(\mathrm{x}-10)(\mathrm{x}-2)$
$X=\{10,2\}$
d) $\sqrt{x^{2}+4}=3$
e) $\sqrt{y-5}+\sqrt{y}=5$
$\mathrm{x}^{2}+4=(3)^{2}$

$$
x^{2}=9-4
$$

$$
x^{2}=5
$$

$$
\begin{aligned}
& \sqrt{y-5}=5-\sqrt{y} \\
& y-5=(5-\sqrt{y})^{2} \longleftarrow \quad(5-\sqrt{y})(5-\sqrt{y})
\end{aligned}
$$

$$
x= \pm \sqrt{5}
$$

$$
x=\{ \pm \sqrt{5}\}
$$

$$
\begin{aligned}
y-5 & =25-10 \sqrt{y}+y \\
-30 & =-10 \sqrt{y} \\
3 & =\sqrt{y} \\
9 & =y \quad y=\{9\}
\end{aligned}
$$

Chp 6 Rationals

\#1. Simplify:
a) $\frac{12 x^{2} y^{2}}{15 x y^{3}}$
b) $\frac{16 x^{2}-25}{12 x-15}$
c) $\frac{3 x-6}{2 x^{2}+x-10}$
$=\frac{4 x}{5 y}$

$$
=\frac{(4 x+5)(4 x-5)}{3(4 x-5)}=\frac{4 x+5}{3}=\frac{3(x-2)}{(2 x+5)(x-2)}=\frac{3}{2 x+5}
$$

\#2. Multiply/Divide the following and simplify:
a) $\frac{12 m^{2} \mathrm{f}}{5 \mathrm{cf}} \cdot \frac{15 \mathrm{c}}{4 \mathrm{~m}}$
b) $\frac{a^{2}-16}{16 a-4 a^{2}} \cdot \frac{2 a^{3}+6 a^{2}}{a^{2}+7 a+12}$
$=\frac{9 \mathrm{~m}}{1}=9 \mathrm{~m}$

$$
=\frac{(-1-4)(a+4)}{4 a(4-a)} \cdot \frac{2 a^{2}(a+3)}{(a+4)(a+3)}=-\frac{a}{2}
$$

c) $\frac{8 y^{2}-2 y-3}{y^{2}-1} \div \frac{2 y^{2}-3 y-2}{2 y-2} \div \frac{3-4 y}{y+1}$

$$
=\frac{(4 y-3)(2 y+1)}{(y-1)(y+1)} \cdot \frac{2(y-1)}{(2 y+1)(y-2)} \cdot \frac{y+1}{3-4 y}=\frac{-2}{y-2}
$$

\#3. Add/Subtract the following and simplify:
a) $\frac{3}{m}+\frac{2}{n}-\frac{3}{c}$
b) $\frac{a-5}{2}-\frac{a-2}{3}$
c) $\frac{y^{2}-20}{y^{2}-4}-\frac{y-2}{y+2}$
$=\frac{3 \mathrm{nc}+2 \mathrm{mc}-3 \mathrm{mn}}{\mathrm{mnc}}$
$=\frac{3(\mathrm{a}-5)}{6}-\frac{2(\mathrm{a}-2)}{6}$
$=\frac{y^{2}-20}{(y+2)(y-2)}-\frac{(y-2)(y-2)}{(y+2)(y-2)}$
$=\frac{3 a-15-2 a+4}{6}=\frac{a-11}{6}$
$=\frac{y^{2}-20}{(y+2)(y-2)}-\frac{y^{2}-4 y+4}{(y+2)(y-2)}$
d) $\frac{5}{x^{2}-5 x+6}-\frac{4}{x^{2}-x-6}$
$=\frac{y^{2}-20-y^{2}+4 y-4}{(y+2)(y-2)}$
$=\frac{5}{(x-3)(x-2)}-\frac{4}{(x-3)(x+2)}$
e) $\frac{1+\frac{1}{x}}{x-\frac{1}{x}}$
$=\frac{5(x+2)}{(x-3)(x-2)(x+2)}-\frac{4(x-2)}{(x-3)(x-2)(x+2)}$
$=\frac{4 y-24}{(y+2)(y-2)}$
$=\frac{5 x+10-4 x+8}{(x-3)(x-2)(x+2)}$
$=\left(1+\frac{1}{\mathrm{x}}\right) \div\left(\mathrm{x}-\frac{1}{\mathrm{x}}\right)$
$=\frac{x+18}{(x-3)(x-2)(x+2)}$

$$
=\frac{x+1}{x} \div \frac{x^{2}-1}{x}
$$

$$
=\frac{x+1}{x} \cdot \frac{x}{(x+1)(x-1)}=\frac{1}{x-1}
$$

\#4. Solve each rational equation and list all the restrictions:
a) $\frac{x-2}{2}=\frac{2 x+4}{5}-1$
b) $\frac{12}{x}-1=\frac{9}{x}$
(10) $\left[\frac{x-2}{2}=\frac{2 x+4}{5}-1\right]$
(x) $\left[\frac{12}{\mathrm{x}}-1=\frac{9}{\mathrm{x}}\right]$
$5(x-2)=2(2 x+4)-10(1)$
$12-1 x=9$
$5 x-10=4 x+8-10$
$5 x-10=4 x-2$
$x=8 \quad\{8\}$ no restrictions
$-1 x=-3$
$x=3 \quad\{3\}$
$x \neq 0$
c) $\frac{x}{x-2}=\frac{x-6}{x-4}$
d) $\frac{\text { d }}{d+4}=\frac{2-d}{d^{2}+3 d-4}+\frac{1}{d-1}$

$$
\begin{aligned}
& (x-2)(x-4)\left[\frac{x}{x-2}=\frac{x-6}{x-4}\right] \\
& x(x-4)=(x-6)(x-2) \\
& x^{2}-4 x=x^{2}-8 x+12 \\
& 4 x=12 \\
& x=3 \quad\{3\} \quad x \neq 2 \quad x \neq 4
\end{aligned}
$$

$$
(d+4)(d-1)\left[\frac{d}{d+4}=\frac{2-d}{(d+4)(d-1)}+\frac{1}{d-1}\right]
$$

$$
\begin{aligned}
& d(d-1)=(2-d)+1(d+4) \\
& d^{2}-d=2-d+d+4 \\
& d^{2}-d-6=0 \\
& (d-3)(d+2)=0 \\
& d=3 \quad d=-2 \quad\{3,-2\} \quad d \neq-4 \quad d \neq 1
\end{aligned}
$$

\#5. The sum of two numbers is 12 . The sum of their reciprocals is $\frac{4}{9}$. Find the numbers. Let x be one number Let $12-\mathrm{x}$ be the other $\quad\{$ Sum of the numbers is 12 \}

$$
\begin{gathered}
\frac{1}{x}+\frac{1}{12-x}=\frac{4}{9} \quad(9)(x)(12-x)\left(\frac{1}{x}+\frac{1}{12-x}=\frac{4}{9}\right) \\
(1)(9)(12-x)+(1)(9)(x)=(4)(x)(12-x) \\
108-9 x+9 x=48 x-4 x^{2} \\
4 x^{2}-48 x+108=0 \\
4\left(x^{2}-12 x+27\right)=0 \\
4(x-9)(x-3)=0 \\
x=9 \quad x=3 \quad \text { The numbers are } 9 \text { and } 3 .
\end{gathered}
$$

\#6. Two hoses are used to fill up a pool. If one hose fills the pool in 6 hrs and the other fills the pool in 12 hrs , how much time would it take the fill the pool using both hoses?
$\frac{x}{6}+\frac{x}{12}=1$
(12) $\left(\frac{x}{6}+\frac{x}{12}=1\right) \quad 2 \mathrm{x}+\mathrm{x}=12$
$3 x=12$
$x=4$
It will take 4 hrs to fill the pool.

Chp 7 Absolute Value and Reciprocal Functions

\#1. Evaluate:

a) $|-3|$
b) $-2|-6|$
$=-2(6)$

$$
=-12
$$

c) $3|-2|-4|-2|$
$=3(2)-4(2)$
$=6-8$
$=-2$
d) $|2-6-3|-|5-4+3(2)|$
=3
$=|-7|-|7|$

$$
=7-7
$$

$$
=0
$$

\#2. Solve each equation:
b) $5|4 x|+10=5$
c) $|4 x+3|=7$

Pos Case	Neg Cas
$3 x=9$	$3 x=-9$
$x=3$	$x=-3$

Soln: $\{3,-3\}$
$5|4 x|=-5$
$|4 x|=-1$
Not possible, abs
value is never neg
Soln: \{ \}

Pos Case Neg Case
$4 x+3=7 \quad 4 x+3=-7$
$4 x=4 \quad 4 x=-10$
$x=1 \quad x=-2.5$
Soln: $\{1,-2.5\}$
d) $|3 x+3|=2 x-5$

Pos Case
$3 x+3=2 x-5$
$x=-8$
(reject, it doesn't check)

Neg Case
$3 x+3=-2 x+5$
$5 x=2$
$\mathrm{x}=.4$
(reject, it doesn't check

Solution: \{ \} no soln
e) $\left|x^{2}-2 x+2\right|=3 x-4$

Pos Case
$x^{2}-2 x+2=3 x-4$
$x^{2}-5 x+6=0$
$(x-3)(x-2)=0$
$x=3 x=2$

Soln: $\{3,2\}$

Neg Case
$x^{2}-2 x+2=-3 x+4$
$x^{2}+x-2=0$
$(x+2)(x-1)=0$
$x=-2 x=1$
reject both since
neither check
\#3. Use the graph of $y=f(x)$ to sketch the graph of $y=|f(x)|$
a)

b)

\#4. Sketch the graph of:
a) $y=|x-3|$

$\mathrm{p}=-\frac{\mathrm{b}}{2 \mathrm{a}}=-\frac{0}{2(-1)}=0$
$q=-(0)^{2}+4=4$
vertex: $(0,4)$
Reflect neg values across the x-axis.
\#5. Express $y=|x-3|$ as a piecewise function.
$0=x-3 \quad x$ int is $3 \quad y=\left\{\begin{array}{ll}x-3 & \text { if } x \geq 3 \\ -x+3 & \text { if } x<3\end{array}\right\}$
\#6. Sketch the graph of $y=x+1$ and $y=\frac{1}{x+1}$. State the invariant points.

\#7. Sketch the graph of $y=x^{2}-x-6$ and $y=\frac{1}{x^{2}-x-6}$. State the invariant points.
Vertical Asymptotes at: (N.P.V)
$0=x^{2}-x-6$
$0=(x-3)(x+2) \quad x=3 \quad x=-2$

Invariant Points: Invariant Points:
$y=1$
$y=-1$
$1=x^{2}-x-6$
$-1=x^{2}-x-6$
$0=x^{2}-x-7$
$0=x^{2}-x-5$

Use quad formula to find the invariant pts:
$x=3.2 \quad x=-2.2$
Use quad formula to find the invariant pts:
$x=2.8 \quad x=-1.8$
$(3.2,1) \quad(-2.2,1)$
$(2.8,1) \quad(-1.8,1)$

To find the vertex of $y=x^{2}-x-6$:
$\mathrm{p}=-\frac{\mathrm{b}}{2 \mathrm{a}}=-\frac{-1}{2(1)}=\frac{1}{2}=.5$
$\mathrm{q}=(.5)^{2}-(.5)-6$
vertex: (.5, -6.25)

Chp 8 Systems

\#1. Solve by graphing. Give approximate solutions if needed. Verify your solutions.
$y=1 / 2 x+2$
$y+x^{2}+2 x=8$
$y=-x^{2}-2 x+8$
$\mathrm{p}=-\frac{\mathrm{b}}{2 \mathrm{a}}=\frac{-(-2)}{2(-1)}=-1$
$q=-(-1)^{2}-2(-1)+8=9$

Vertex is at (-1, 9$)$

Check $(-4,0):$
$y=1 / 2 x+2$
$0=1 / 2(-4)+2$
$0=-2+2$
$0=0$ yes
$y+x^{2}+2 x=8$
$0+(-4)^{2}+2(-4)=8$
$0+16-8=8$
$8=8$ yes

Check $(1.5,2.7):$
$y=1 / 2 x+2$
$2.7=1 / 2(1.5)+2$
$2.7=.75+2$
$2.7=2.75$ yes, close

$y+x^{2}+2 x=8$
$2.7+(1.5)^{2}+2(1.5)=8$
$2.7+2.25+3=8$
$7.95=8$ yes, close

Solutions: $\{(-4,0)(1.5,2.7)\}$ approximately
\#2. Solve algebraically. Verify your solutions.
$y=3 x+1$
$y=6 x^{2}+10 x-4$

Substitute $3 x+1$ in for y in the $2^{\text {nd }}$ equation:
$3 x+1=6 x^{2}+10 x-4$
$0=6 x^{2}+7 x-5$
$0=(2 x-1)(3 x+5)$
$x=\frac{1}{2} \quad x=-\frac{5}{3}$
substitute x to find y values
$y=3 x+1 \quad y=3 x+1$
$y=3\left(\frac{1}{2}\right)+1 \quad y=3\left(-\frac{5}{3}\right)+1$
$y=\frac{5}{2}$
Solutions: $\left\{\left(\frac{1}{2}, \frac{5}{2}\right),\left(-\frac{5}{3},-4\right)\right\}$

| Check: $\left(\frac{1}{2}, \frac{5}{2}\right)$ |
| :--- | :--- |
| $y=3 x+1$ |
| $\frac{5}{2}=3\left(\frac{1}{2}\right)+1$ |
| $\frac{5}{2}=\frac{3}{2}+\frac{2}{2}$ |
| $\frac{5}{2}=\frac{5}{2}$ |
| $y=6 x^{2}+10 x-4$ |
| $\frac{5}{2}=6\left(\frac{1}{2}\right)^{2}+10\left(\frac{1}{2}\right)-4$ |
| $\frac{5}{2}=6\left(\frac{1}{4}\right)+5-4$ |
| $\frac{5}{2}=\frac{3}{2}+1$ |
| $\frac{5}{2}=\frac{5}{2}$ |
| $y=3 x+1$ |
| $-4=3\left(-\frac{5}{3}\right)+1$ |
| $-4=-5+1$ |
| $-4=-4$ |\quad| Check: $\left(-\frac{5}{3},-4\right)$ |
| :--- |
| $-4=6 x^{2}+10 x-4$ |
| $-4=6\left(\frac{25}{3}\right)^{2}+10-\frac{50}{3}-4$ |
| $-4=\frac{50}{3}-\frac{50}{3}-4$ |
| $-4=-4$ |

\#3. Solve algebraically. Verify your solutions.
$x^{2}+y-3=0$
$x^{2}-y+1=0$ Add both together to eliminate the y terms

| ------------------
 $2 x^{2}-2=0$ You could also use substitution to
 solve this problem!
 $2 x^{2}=2$
 $x^{2}=1$
 $x= \pm 1$ ${ }^{2}$ |
| :--- | :--- |

substitute x to find y values
$x=1 \quad x=-1$
$x^{2}+y-3=0 \quad x^{2}+y-3=0$
$(1)^{2}+y-3=0$
$(-1)^{2}+y-3=0$
$1+y-3=0$
$1+y-3=0$
$y=2$
$y=2$

Solutions: $\{(1,2),(-1,2)\}$

| Check: (1, 2) |
| :--- | :--- |
| |
| $x^{2}+y-3=0$ |
| $(1)^{2}+2-3=0$ |
| $1+2-3=0$ |
| $0=0$ |
| $x^{2}-y+1=0$ |
| $(1)^{2}-2+1=0$ |
| $1-2+1=0$ |
| $0=0$ |\quad| Check: $(-1,2)$ |
| :--- |
| |
| $x^{2}+y-3=0$ |
| $(-1)^{2}+2-3=0$ |
| $1+2-3=0$ |
| $0=0$ |
| $x^{2}-y+1=0$ |
| $(-1)^{2}-2+1=0$ |
| $1-2+1=0$ |
| $0=0$ |

\#4. Solve algebraically. Verify your solutions.
$y=x^{2}-4 x+1$
$2 y=-x^{2}+4 x+2$
substitute $x^{2}-4 x+1$ in for y in the $2^{\text {nd }}$ equation:
$2\left(x^{2}-4 x+1\right)=-x^{2}+4 x+2$
$2 x^{2}-8 x+2=-x^{2}+4 x+2$
$3 x^{2}-12 x=0$
$3 x(x-4)=0$
$x=0 \quad x=4$
substitute x to find y values

$$
\begin{array}{ll}
x=0 & x=4 \\
y=x^{2}-4 x+1 & 2 y=-x^{2}+4 x+2 \\
y=(0)^{2}-4(0)+1 & 2 y=-(4)^{2}+4(4)+2 \\
y=1 & 2 y=2 \\
& y=1
\end{array}
$$

Solutions: $\{(0,1),(4,1)\}$

$$
\begin{aligned}
& \text { Check: }(0,1) \\
& y=x^{2}-4 x+1 \\
& 1=(0)^{2}-4(0)+1 \\
& 1=1 \\
& 2 y=-x^{2}+4 x+2 \\
& 2(1)=-(0)^{2}+4(0)+2 \\
& 2=2
\end{aligned}
$$

Check: $(4,1)$
$y=x^{2}-4 x+1$
$1=(4)^{2}-4(4)+1$
$1=16-16+1$
$1=1$
$2 y=-x^{2}+4 x+2$
$2(1)=-(4)^{2}+4(4)+2$
$2=-16+16+2$
$2=2$
\#1. Solve by graphing:
a) $y<\frac{2}{3} x+1$

Slope is $\frac{2}{3} y$-int: 1

Test Point: $(0,0)$
$0<\frac{2}{3}(0)+1$
$0<1$ true, so shade towards the pt $(0,0)$
b) $3 x-2 y \geq 6$

$3 x-2 y \geq 6$
$-2 y \geq-3 x+6$
$\frac{-2 y}{-2} \leq \frac{-3 x}{-2}+\frac{6}{-2}$
$y \leq \frac{3}{2} x-3$
Test Point: $(0,0)$
$0 \leq \frac{3}{2}(0)-3$
$0 \leq-3$ false, so shade away from (0,0)
\#2. Solve:
a) $x^{2}+x-12<0$
$(x+4)(x-3)<0 \quad$ zeros at -4 and 3

Interval	$\mathrm{x}<-4$	$-4<\mathrm{x}<3$	$\mathrm{x}>3$
Test Point	-5	0	4
Substitution (Work Area)	$(-5)^{2}+(-5)-12$ $25-5-12$ $20-12$ 8	$0^{2}+0-12$ -12	$4^{2}+4-12$ $16+4-12$ $20-12$ 8
	+		+
Result: + or -	+	-	

Solution is $x=\{x \mid-4<x<3, x \varepsilon \mathbb{R}\}$
c) $x^{2}-3 x+6<2 x$
$x^{2}-5 x+6<0 \quad(x-3)(x-2)<0$
zeros at 2 and 3

Interval	$\mathrm{x}<2$	$2<\mathrm{x}<3$	$\mathrm{x}>3$
Test Point	-3	2.5	4
Substitution (Work Area)	$(-3)^{2}-5(-3)+6$ $9+15+6$ 30	$(2.5)^{2}-5(2.5)+6$ $6.25-12.5+6$ -.25	$(4)^{2}-5(4)+6$ $16-20+6$ 2
Result: + or -	+	-	+

Solution is $2<\mathrm{x}<3 x=\{x \mid 2<x<3, x \in \mathbb{R}\}$
b) $\begin{array}{llr}x^{2}>5 x & & \text { zeros at } \\ x^{2}-5 x>0 & x(x-5)>0 & 0 \text { and } 5\end{array}$

Interval	$\mathrm{x}<0$	$0<\mathrm{x}<5$	$\mathrm{x}>5$
Test Point	-1	1	6
Substitution (Work Area)	$(-1)^{2}-5(-1)$ $1+5$ 6	$(1)^{2}-5(1)$ $1-5$ -4	$(6)^{2}-5(6)$ $36-30$ 6
Result: + or -	+	-	+

Solution is $\mathrm{x}<0$ and $\mathrm{x}>5 \quad x=\{x \mid 5>x>0, x \in \mathbb{R}\}$
d) $2 x^{2}<3-5 x$
$2 x^{2}+5 x-3<0 \quad(2 x-1)(x+3)<0$
zeros at -3 and $1 / 2$

Interval	$\mathrm{x}<-3$	$-3<\mathrm{x}<1 / 2$	$\mathrm{x}>1 / 2$
Test Point	-4	0	1
Substitution (Work Area)	$2(-4)^{2}+5(-4)-3$ $32-20-3$ 9	$2(0)^{2}+5(0)-3$ -3	$2(1)^{2}+5(1)-3$ $2+5-3$ 4
Result: + or -	+	-	+

Solution is $-3<\mathrm{x}<1 / 2 x=\{x \mid-3<x<0.5, x \in \mathbb{R}\}$
\#3. Solve by graphing:
a) $y<(x-2)^{2}-1$

Vertex: $(2,-1)$ Use 1a/3a/5a to graph
Test Point: $(0,0)$
$y<(x-2)^{2}-1$
$0<(0-2)^{2}-1$
$0<4-1$
$0<3$ True, so shade towards pt $(0,0)$

$y \geq x^{2}-2 x-3$
$\mathrm{p}=-\frac{\mathrm{b}}{2 \mathrm{a}}=-\frac{-2}{2(1)}=\frac{2}{2}=1$
$q=(1)^{2}-2(1)-3=-4$

Vertex: (1,-4) Use 1a/3a/5a to graph or use x-intercepts: $(x-3)(x+1)$ x-intercepts: 3 and -1

Test Point: $(0,0)$

$$
\begin{aligned}
& y \geq x^{2}-2 x-3 \\
& 0 \geq(0)^{2}-2(0)-3 \\
& 0 \geq-3 \quad \text { True, so shade towards pt }(0,0)
\end{aligned}
$$

