Math Pre-Calc 20 Final Review (Solutions)

Chp1 Sequences and Series

#1. Write the first 4 terms of each sequence: a) $t_1 = 3$ d = -2 b) $t_n = 3^n$

3, 1, -1, -3 3¹, 3², 3³, 3⁴ OR 3, 9, 27, 81

#2. Find the value of the term indicated:

a) 1, 3, 9, ..., t_7 $t_n = ar^{n-1}$ $t_7 = 1(3)^{7-1}$ $t_7 = 729$ b) 17, 13, 9, ..., t_{25} $t_n = a + d(n-1)$ $t_{25} = 17 - 4(25-1)$ $t_{25} = 17 - 4(24)$ $t_{25} = 17 - 96$ $t_{25} = -79$

#3. Find the number of terms in each sequence:

$\frac{4}{8}, \frac{7}{8}, \frac{10}{8}, \dots, \frac{124}{8}$ $t_{n} = a + d(n-1)$ $\frac{124}{8} = \frac{4}{8} + \frac{3}{8}(n-1)$ $124 = 4 + 3(n-1)$ $124 = 4 + 3n - 3$ $124 = 1 + 3n$ $123 = 3n$ $n = 41$ $t_{n} = ar^{n-1}$ $r = \frac{-10}{-5} = 2$ $-10240 = -5(2)^{n-1}$ $\frac{-10240}{-5} = \frac{-5(2)^{n-1}}{-5}$ $2048 = 2^{n-1}$ $2^{11} = 2^{n-1}$ $11 = n - 1$ $n = 12$	a) $\frac{1}{2}, \frac{7}{8}, \frac{5}{4}, \dots, \frac{31}{2}$	b) -5, -10, -20, , -10240
	$\overline{8}, \overline{8}, \overline{8}, \overline{8}, \dots, \overline{8}$ $t_n = a + d(n-1)$ $\frac{124}{8} = \frac{4}{8} + \frac{3}{8}(n-1)$ $124 = 4 + 3(n-1)$ $124 = 4 + 3n - 3$ $124 = 1 + 3n$ $123 = 3n$	-5 $-10240 = -5(2)^{n-1}$ $\frac{-10240}{-5} = \frac{-5(2)^{n-1}}{-5}$ $2048 = 2^{n-1}$ $2^{11} = 2^{n-1}$ $11 = n -1$

#4. Write the general term (t_n) for each sequence:

a) -8, 4, -2,	b) -5, -10, -15,
t _n = ar ⁿ⁻¹	t _n = a + d(n-1)
t _n = -8(-½) ⁿ⁻¹	t _n = -5 + -5(n-1)
	t _n = -5 – 5n + 5
	t _n = -5n

#5. The 20th term of an arithmetic sequence is 12 and the 32nd term is 48. Find the first term and the common difference.

Note: Between 20th and 32nd terms, there are 12 common differences.

 $\begin{array}{ll} 48 = 12 + 12d & t_n = a + d(n-1) \\ 36 = 12d & 48 = a + 3(32-1) \\ d = 3 & 48 = a + 93 \\ a = -45 \end{array}$

#6. Write out the first three terms of the geometric sequence whose fifth term is 48 and whose seventh term is 192.

Note: Between 5th and 7th terms, there are 2 common ratios. 192 = $48r^2$ $t_n = ar^{n-1}$

 $4 = r^{2}$ $48 = a(2)^{5-1}$ or $48 = a(-2)^{5-1}$ r = 2 or -248 = a(16)48 = a(16)a = 3 a = 3 1st 3 terms==> 3. 6. 12 3. -6. 12 or #7. Find the sum of each series: a) 100 + 90 + 80 + ... + -200 b) $3 + 6 + 12 + ... + S_9$ Find n first. n = 9 r = 2 (so use the r - 1 form) $S_n = \frac{n}{2} (a + t_n)$ $t_n = a + d(n - 1)$ $\mathbf{S}_{n} = \frac{\mathbf{a}(\mathbf{r}^{n} - 1)}{\mathbf{r} - 1}$ -200 = 100 - 10(n - 1) $S_{31} = \frac{31}{2} (100 - 200)$ -200 = 100 - 10n + 10 $S_9 = \frac{3(2^9 - 1)}{2 - 1} = \frac{3(511)}{1} = 1533$ S₃₁ = 15.5(-100) -200 = 110 - 10n-310 = -10n $S_{31} = -1550$ n = 31

#8. Find the sum of the infinite geometric series:

a) $2+1+\frac{1}{2}+$	b) $4 + \frac{20}{3} + \frac{100}{9} \dots$
-----------------------	---

$$r = \frac{1}{2} \text{ so the Sum is possible.} S_{\infty} = \frac{a}{1-r} = \frac{2}{1-\frac{1}{2}} = \frac{2}{\frac{1}{2}} = 2 \div \frac{1}{2} = 2 \times 2 = 4$$

$$r = \frac{20}{3} \div 4 = \frac{20}{3} \times \frac{1}{4} = \frac{20}{12} = \frac{5}{3}$$

Since r > 1, the sum is not possible.

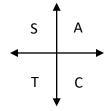
#9. Suppose that each year a tree grow 90% as much as it did the year before. If the tree was2.35 m tall after the 1st year, how tall would it eventually get?

This is an infinite sum. 2.35, .9x2.35, etc. So the ratio r = .9

$$S_{\infty} = \frac{a}{1-r} = \frac{2.35}{1-.9} = \frac{2.35}{.1} = 23.5$$
 The tree would grow to 23.5 m in height.

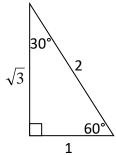
#10. A man walks 5km in week1, 8 km in week2, 11 km in week3 and so forth. How many km would he walk in total over 10 weeks?

The series would be 5 + 8 + 11 + ... with n=10


$$S_{n} = \frac{n}{2} [2a + d(n-1)]$$

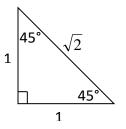
$$S_{10} = \frac{10}{2} [2(5) + 3(10-1)] = 5 [10 + 27] = 5(37) = 185$$
 He would walk 185 km

Chp2 Trig


#1. Sketch the angle and name its reference angle: 242°

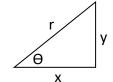
#2. Find the exact value of the following without using a calculator:a) Cos 210°b) Sin 315°

Ref angle is 30° (210-180) in quadrant 3. Cos is negative in quad 3.


Cos 30° = $\frac{\sqrt{3}}{2}$ So Cos 210° = $-\frac{\sqrt{3}}{2}$ Draw a 30,60,90 triangle to help find this.

Ref angle is 45° (360-315) in quadrant 4. Sin is negative in quad 4.

Sin 45° =
$$\frac{1}{\sqrt{2}}$$
 So Sin 315° = $-\frac{1}{\sqrt{2}} = -\frac{\sqrt{2}}{2}$

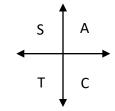

Draw a 45,45,90 triangle to help find this.

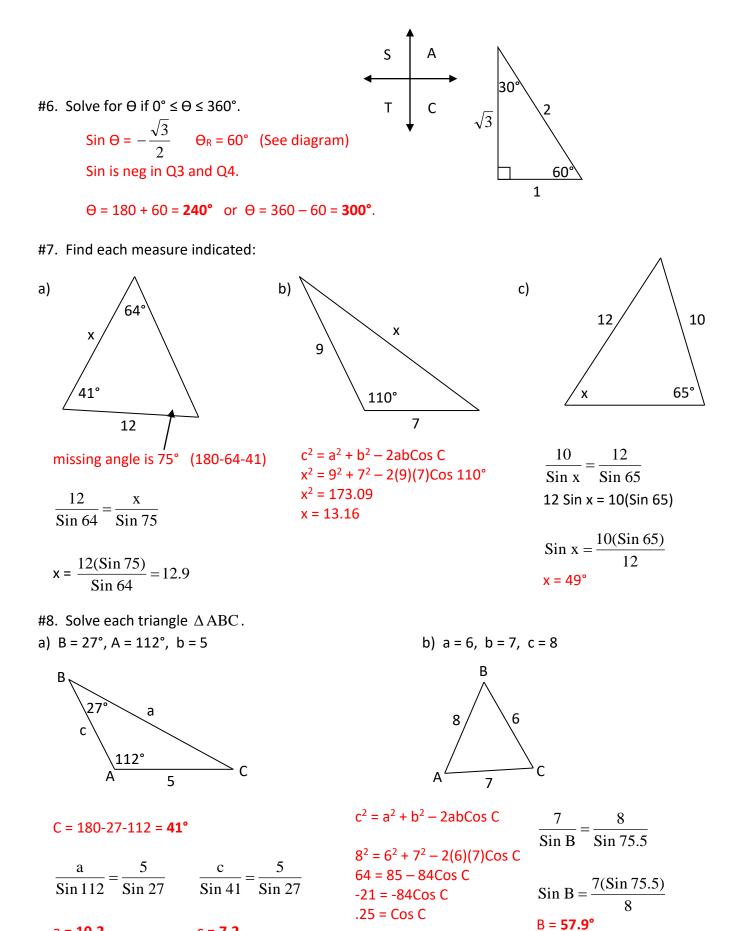
#3. A point P(4,-3) lies on the terminal arm of an angle Θ in standard position. Determine the exact trigonometric ratios for Sin Θ , Cos Θ and Tan Θ .

 $x^{2} + y^{2} = r^{2}$ x=4 y=-3 (4)² + (-3)² = r² 25 = r² r = 5 (r is always positive)

 $\sin \Theta = \frac{y}{r} = -\frac{3}{5} \qquad \qquad \cos \Theta = \frac{x}{r} = \frac{4}{5} \qquad \qquad \tan \Theta = \frac{y}{x} = -\frac{3}{4}$

#4. If Sin $\Theta = \frac{5}{13}$, Θ is in Q2, find the Cos Θ and Tan Θ .

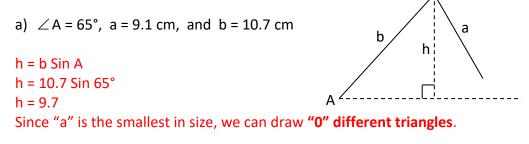

Sin $\Theta = \frac{y}{r}$ y = 5 r = 13 $x^2 + y^2 = r^2$ $x^2 + (5)^2 = (13)^2$ $x^2 + 25 = 169$ $x^2 = 144$ $x = \pm 12$


In quad 2, Cos Θ and Tan Θ are both neg, so Cos $\Theta = \frac{x}{r} = -\frac{12}{13}$ Tan $\Theta = \frac{y}{x} = -\frac{5}{12}$

#5. Find the quadrant where $\cos \Theta < 0$ and $\tan \Theta > 0$.

Cos neg in Q2 and Q3 Tan pos in Q1 and Q3

So **Q3** is where Θ must be.



C = **75.5°**

a = **10.2** c = **7.2**

A = 180-75.5-57.9 = 46.6°

#9. Determine how many ABC triangles satisfy the following conditions.

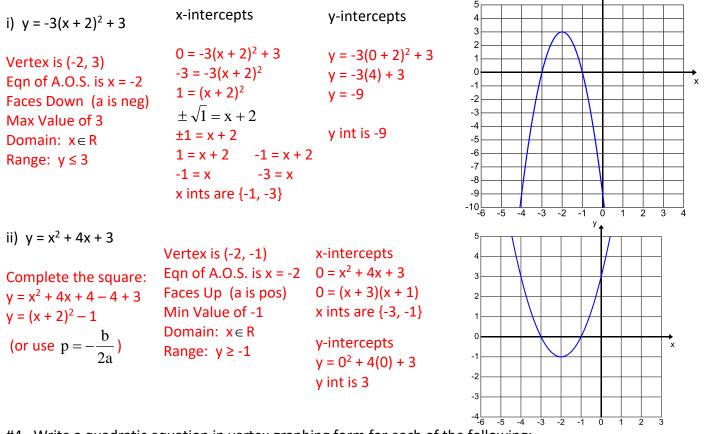
b) $\angle A = 24^{\circ}$, a = 5, and b = 7

h = b Sin A
h = 7 Sin 24°
h = 2.8
Since "h" is the smallest in size, we can draw "2" different triangles.

#10. Two boats leave a dock at the same time. Each travels in a different direction. The angle between their courses is 54°. If one boat travels 80 km and the other travels 100 km, how far apart are they? x

 $x^{2} = 100^{2} + 80^{2} - 2(100)(80)\cos 54^{\circ}$ $x^{2} = 16400 - 9404.6$ $x^{2} = 6995.4$ x = 83.6They are 83.6km apart. D

Chp 3 Quadratic Functions


#1. Find the vertex of each quadratic:

a) $y = 3x^2$	b) $y+3 = -\frac{1}{2}x^2$	c) $y = (x + 1)^2 + 2$
vertex is (0, 0)	vertex is (0, -3)	vertex is (-1, 2)

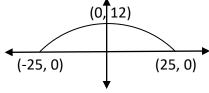
#2. Write each of the following in vertex-graphing form by completing the square:

a) $y = x^2 + 4x$	b) $y = x^2 + x - 1$	c) $y = -3x^2 + 12x - 2$
$y = x^2 + 4x + 4 - 4$	$y + 1 = x^2 + 1x$ $y + 1 + \frac{1}{4} = x^2 + x + \frac{1}{4}$	$y = -3x^2 + 12x$ $y + 2 = -3(x^2 - 4x)$
$y = (x + 2)^2 - 4$	$y + 1 + \frac{1}{4} = (x + \frac{1}{2})^2$	$y + 2 - 12 = -3(x^2 - 4x + 4)$
	$y = (x + \frac{1}{2})^2 - \frac{5}{4}$	$y - 10 = -3(x^2 - 4x + 4)$ $y = -3(x - 2)^2 + 10$

#3. Answer the following questions for each quadratic function:a) vertex b) equation of the axis of symmetry c) concavity (faces up or down)d) maximum or minimum value e) domain and range f) x and y interceptsg) sketch the graph

#4. Write a quadratic equation in vertex graphing form for each of the following:a) a = 2 vertex is (-1, 2)b) vertex is (3, 2) and passes through the point (2, -1)

y = $a(x-p)^2 + q$ y = $a(x-p)^2 + q$ y = $a(x-p)^2 + q$ p=3, q=2, x=2, y=-1 -1 = $a(2-3)^2 + 2$ -1 = a(1) + 2-3 = ay = $-3(x-3)^2 + 2$


#5. Write the new equation of the parabola $y = x^2$ after the following: (3 marks) a) a horizontal translation 2 units to the left and a vertical translation 1 unit up $y = a(x - p)^2 + q$ a=1, p=-2, q= 1 $y = (x + 2)^2 + 1$

b) a vertical translation 3 units down and a reflection across the x-axis y = $a(x - p)^2 + q$ a=-1, p=0, q= -3 **y** = $-1x^2 - 3$

c) a multiplication of the y-values by -2 and then a horizontal translation 1 unit to the right $y = a(x - p)^2 + q$ a=-2, p=1, q= 0 $y = -2(x - 1)^2$

#6. A bridge has the shape of a parabola. Its width is 50m and its height is 12m. Find the quadratic equation for this bridge.

y =
$$a(x - p)^2 + q$$
 p=0, q=12, x=25, y=0
0 = $a(25 - 0)^2 + 12$
0 = $a(625) + 12$
-12 = 625a $a = -\frac{12}{625}$ $y = -\frac{12}{625}x^2 + 12$

#7. The height, "h", in metres, of a flare "t" seconds after it is fired into the air is given by the equation $h(t)=-4.9t^2 + 61.25t$. At what height is the flare at its maximum height? How many seconds after being shot does this occur?

$$p = -\frac{b}{2a} = -\frac{61.25}{2(-4.9)} = 6.25 \qquad q = -4.9(6.25)^2 + 61.25(6.25) = 191.4 \qquad \text{Vertex is } (6.25, 191.4)$$

Max height is at 191.4m. It happens 6.25 seconds after being shot.

#8. A farmer has 100m of fencing material to enclose a rectangular field adjacent to a river. No fencing is required along the river. Find the dimensions of the rectangle that will make its area a maximum. What is the maximum Area? (Hint: a diagram of the situation is given below)

q = -2(25)² + 100(25) = 1250 Vertex is (25, 1250)

100 - 2(25) = 50 So the rectangle is 25m by 50m. The maximum area is $1250m^2$.

Chp 4 Quadratic Equations

#1. Solve the quadratic equations by factoring:

a) $3x^2 - 36x = 0$	b) $2x^2 - 7x - 15 = 0$	c) $6x^2 - 11x + 3 = 24$
3x(x - 12) = 0 x = 0 x = 12 x={0, 12}	(2x + 3)(x - 5) = 0 $X = \left\{ -\frac{3}{2}, 5 \right\}$	$6x^{2} - 11x + 3 = 24$ $6x^{2} - 11x - 21 = 0$ (6x + 7)(x - 3) = 0 $X = \left\{-\frac{7}{6}, 3\right\}$

#2. Solve the quadratic equations by completing the square: (Write answers in Exact Form) a) $x^2 - 6x + 5 = 0$ b) $x^2 + 4x + 1 = 0$ c) $3x^2 - x - 2 = 0$

	\mathbf{b}	$C_{j} = 0$
$x^2 - 6x = -5$	$x^2 + 4x = -1$	$3x^2 - x = 2$
$x^2 - 6x + 9 = -5 + 9$	$x^2 + 4x + 4 = -1 + 4$	$x^2 - \frac{1}{3}x = \frac{2}{3}$
$(x-3)^2 = 4$	$(x + 2)^2 = 3$	$x - \frac{1}{3}x - \frac{1}{$
$\mathbf{x} - 3 = \pm \sqrt{4}$	x + 2 = $\pm \sqrt{3}$	$x^{2} - \frac{1}{3}x + \frac{1}{36} = \frac{2}{3} + \frac{1}{36}$
$x - 3 = \pm 2$	$x = -2 \pm \sqrt{3}$	$x^{-} - \frac{1}{3}x^{+} \frac{1}{36} - \frac{1}{3} + \frac{1}{36}$
x - 3 = 2 or $x - 3 = -2$	$\{-2 \pm \sqrt{3}\}$	$(1)^2$ 25
$x = 5 \qquad x = 1$	(-= ,,,,	$\left(\mathbf{x} - \frac{1}{6}\right)^2 = \frac{25}{36}$
{5, 1}		1 25
		$x - \frac{1}{6} = \pm \sqrt{\frac{25}{36}}$
		• • • •
		$\mathbf{x} = \frac{1}{6} \pm \frac{5}{6} \qquad \left\{ \frac{6}{6}, -\frac{4}{6} \right\} = \left\{ 1, -\frac{2}{3} \right\}$
		0 0 (0 0) (5)

#3. Solve the quadratic equations using the quadratic formula: (Write answers in Exact Form) a) $x^2 + 4x - 96 = 0$ a =1, b=4, c=-96

 $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-4 \pm \sqrt{(4)^2 - 4(1)(-96)}}{2(1)} = \frac{-4 \pm \sqrt{400}}{2} = \frac{-4 \pm 20}{2} = -2 \pm 10$ {-12, 8}

b)
$$3x^2 = 4$$
 (Hint: Same as $3x^2 - 0x - 4 = 0$) $a=3, b=0, c=-4$
 $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{0 \pm \sqrt{(0)^2 - 4(3)(-4)}}{2(3)} = \frac{\pm \sqrt{48}}{6} = \frac{\pm 4\sqrt{3}}{6} = \frac{\pm 2\sqrt{3}}{3}$ $\left\{\frac{\pm 2\sqrt{3}}{3}\right\}$

#4. Find the zeros of the function $f(x) = x^2 - 10x + 16$. $0 = x^2 - 10x + 16$ 0 = (x - 8)(x - 2)x = 8 x = 2 The zero's are 8 and 2. {Note: The zeros are the same as x-intercepts!}

#5. Find the quadratic equation with the roots of $\left\{\frac{1}{2}, -\frac{2}{3}\right\}$ (2x - 1)(3x + 2) = 0

 $6x^2 + x - 2 = 0$

#6. Find the discriminant and state the nature of the roots:		
a) $x^2 - 4x - 5 = 0$	b) $x^2 = -9$	c) $x^2 + 2x + 1 = 0$
a=1 b=-4 c=-5 Discr = $b^2 - 4ac$ Discr = $(-4)^2 - 4(1)(-5)$ Discr = $16 + 20 = 36$	$x^{2} + 9 = 0$ a=1 b=0 c=9 Discr = b ² - 4ac Discr = (0) ² - 4(1)(9) Discr = 0 - 36 = -36	a=1 b=2 c=1 Discr = $b^2 - 4ac$ Discr = $(2)^2 - 4(1)(1)$ Discr = $4 - 4 = 0$
So there are 2 roots.	So there are 0 roots.	So there is 1 root.

#7. The hypotenuse of a right triangle is 13. If the sum of the legs is 17, find the legs.(Hint: Let one leg be x and the other is therefore 17-x...since the sum is 17.)

```
\begin{array}{l} a^2+b^2=c^2 \\ x^2+(17-x)^2=13^2 \\ x^2+289-34x+x^2=169 \\ 2x^2-34x+120=0 \\ 2(x^2-17x+60)=0 \\ (x-12)(x-5)=0 \\ x=12 \quad x=5 \end{array} \qquad (17-x)(17-x)=289-17x-17x+x^2 \\ \end{array}
```

#8. If $h(t) = 5t^2 - 30t + 45$, find t when h = 20. (Hint: $20 = 5t^2 - 30t + 45$)

 $20 = 5t^{2} - 30t + 45$ $0 = 5t^{2} - 30t + 25$ $0 = 5(t^{2} - 6t + 5)$ 0 = (t - 5)(t - 1) $t = 5 \quad t = 1 \quad \{5, 1\}$

Chp 5 Radicals

#1. Simplify: a) $\sqrt{150}$ = $\sqrt{25}\sqrt{6}$ = $5\sqrt{6}$	b) $\sqrt[3]{32x^5}$ = $\sqrt[3]{8x^3} \sqrt[3]{4x^2}$ = $2x \sqrt[3]{4x^2}$	c) $\sqrt[4]{32x^9y^6}$ = $\sqrt[4]{16x^8y^4} \sqrt[4]{2xy^2}$ = $2x^2y \sqrt[4]{2xy^2}$	Squares 4 9 16 25 36 49 64	Cubes 8 27 64 125 216 x ³ x ⁶	Fourths 16 64 81 625 x ⁴ x ⁸
#2. Change each mixed radii a) $4\sqrt{3}$ $=\sqrt{16}\sqrt{3}$ $=\sqrt{48}$	cal into an entire rac b) $2x \sqrt[3]{3x^2}$ $= \sqrt[3]{8x^3} \sqrt[3]{3x^2}$ $= \sqrt[3]{24x^5}$	lical:	81 100 x ² x ⁴	*-	
#3. Simplify: a) $5\sqrt{2} - 6\sqrt{3} + 7\sqrt{2} - \sqrt{3}$ $= 12\sqrt{2} - 7\sqrt{3}$ c) $3\sqrt[3]{54} + 2\sqrt[3]{128}$ $= 3\sqrt[3]{27}\sqrt[3]{2} + 2\sqrt[3]{64}\sqrt[3]{2}$ $= 9\sqrt[3]{2} + 8\sqrt[3]{2}$ $= 17\sqrt[3]{2}$:	$\sqrt{108} - 2\sqrt{27} - \sqrt{40} - 5\sqrt{160}$ = $\sqrt{36}\sqrt{3} - 2\sqrt{9}\sqrt{3} - \sqrt{4}\sqrt{10} - 5\sqrt{16}$ = $6\sqrt{3} - 6\sqrt{3} - 2\sqrt{10} - 20\sqrt{10}$ = $-22\sqrt{10}$	$\sqrt{10}$		
#4. Multiply (Expand) the formation $(\sqrt{6})(\sqrt{2})$	b) $(3\sqrt{2x})^2$	c) $(\sqrt[3]{4x^2})^2$			
$= \sqrt{12}$ $= 2\sqrt{3}$	$=9\sqrt{4x^2}$ $=9(2x)$ $=18x$	$= \sqrt[3]{16x^4}$ $= \sqrt[3]{8x^3} \sqrt[3]{2x}$ $= 2x \sqrt[3]{2x}$	Reca		

 $\sqrt{num}\sqrt{num} = num$

d)
$$(2x\sqrt{3y})(3x\sqrt{6y^3})$$

e) $3\sqrt{2}(\sqrt{2} + \sqrt{3})$
f) $(3\sqrt{2} - 2\sqrt{5})^2$
 $\sqrt{5}\sqrt{5} = 5$
 $= 6x^2\sqrt{18y^4}$
 $= 3(2) + 3\sqrt{6}$
 $= 6x^2\sqrt{9y^4}\sqrt{2}$
 $= 6+3\sqrt{6}$
 $= 9(2) - 6\sqrt{10} - 6\sqrt{10} + 4(5)$
 $= 38 - 12\sqrt{10}$

g) $(2+\sqrt{x})(3-\sqrt{x})$ = $6-2\sqrt{x}+3\sqrt{x}-x$ = $6-x+\sqrt{x}$

#5. Divide the following and be sure to rationalize all denominators:

a)
$$\frac{3\sqrt{6}}{6\sqrt{2}}$$
 b) $\frac{\sqrt{2}}{\sqrt{10}}$ c) $\frac{3\sqrt{2}}{2\sqrt{3}}$ d) $\frac{3x}{\sqrt{2x}}$

$$= \frac{\sqrt{3}}{2} = \frac{\sqrt{1}}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}} = \frac{\sqrt{5}}{5} = \frac{3\sqrt{2}}{2\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} = \frac{3\sqrt{6}}{2(3)} = \frac{\sqrt{6}}{2} = \frac{3x}{\sqrt{2x}} \cdot \frac{\sqrt{2x}}{\sqrt{2x}} = \frac{3x\sqrt{2x}}{2x} = \frac{3\sqrt{2x}}{2}$$
e) $\frac{3\sqrt{3} - \sqrt{2}}{2\sqrt{2}}$ f) $\frac{\sqrt{5} + \sqrt{3}}{\sqrt{5} - \sqrt{3}}$ g) $\frac{2}{\sqrt[3]{9}}$

$$= \frac{3\sqrt{3} - \sqrt{2}}{2\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}} = \frac{3\sqrt{6} - 2}{4} = \frac{\sqrt{5} + \sqrt{3}}{\sqrt{5} - \sqrt{3}} \cdot \frac{\sqrt{5} + \sqrt{3}}{\sqrt{5} + \sqrt{3}} = \frac{8 + 2\sqrt{15}}{2} = 4 + \sqrt{15}$$

#6. Solve the radical equations:

a)
$$\sqrt{3x-2} = 7$$

 $3x-2 = 49$
 $3x = 51$
 $x = 17$
 $X = \{17\}$
b) $6-2\sqrt{x+7} = -2$
 $\sqrt{x+7} = -8$
 $x = 7$
 $x = 9$
 $x = \{9\}$
c) $\sqrt{2x+5} = x-5$
 $2x + 5 = (x-5)^2$
 $2x + 5 = x^2 - 10x + 25$
 $0 = x^2 - 12x + 20$
 $0 = (x-10)(x-2)$
 $X = \{10, 2\}$

d)
$$\sqrt{x^2 + 4} = 3$$

 $x^2 + 4 = (3)^2$
 $x^2 = 9 - 4$
 $x^2 = 5$
 $x = \pm\sqrt{5}$
 $X = \{\pm\sqrt{5}\}$
e) $\sqrt{y-5} + \sqrt{y} = 5$
 $\sqrt{y-5} = 5 - \sqrt{y}$
 $y-5 = (5 - \sqrt{y})^2$
 $y-5 = 25 - 10\sqrt{y} + y$
 $-30 = -10\sqrt{y}$
 $3 = \sqrt{y}$
 $9 = y$ $y = \{9\}$

Chp 6 Rationals

#1. Simplify:

a)
$$\frac{12x^2y^2}{15xy^3}$$

b) $\frac{16x^2-25}{12x-15}$
c) $\frac{3x-6}{2x^2+x-10}$
 $=\frac{4x}{5y}$
 $=\frac{(4x+5)(4x-5)}{3(4x-5)} = \frac{4x+5}{3}$
 $=\frac{3(x-2)}{(2x+5)(x-2)} = \frac{3}{2x+5}$

#2. Multiply/Divide the following and simplify:

a)
$$\frac{12m^2f}{5cf} \cdot \frac{15c}{4m}$$

= $\frac{9m}{1} = 9m$
b) $\frac{a^2 - 16}{16a - 4a^2} \cdot \frac{2a^3 + 6a^2}{a^2 + 7a + 12}$
= $\frac{(a-4)(a+4)}{4a(4-a)} \cdot \frac{2a^2(a+3)}{(a+4)(a+3)} = -\frac{a}{2}$

c)
$$\frac{8y^2 - 2y - 3}{y^2 - 1} \div \frac{2y^2 - 3y - 2}{2y - 2} \div \frac{3 - 4y}{y + 1}$$
$$= \underbrace{\frac{-1}{(4y - 3)(2y + 1)}}_{(y - 1)(y + 1)} \cdot \underbrace{\frac{2(y - 1)}{(2y + 1)(y - 2)}}_{(2y + 1)(y - 2)} \cdot \underbrace{\frac{y + 1}{3 - 4y}}_{3 - 4y} = \frac{-2}{y - 2}$$

#3. Add/Subtract the following and simplify:

a)
$$\frac{3}{m} + \frac{2}{n} - \frac{3}{c}$$

b) $\frac{a-5}{2} - \frac{a-2}{3}$
c) $\frac{y^2 - 20}{y^2 - 4} - \frac{y-2}{y+2}$

$$= \frac{3nc + 2mc - 3mn}{mnc}$$

$$= \frac{3(a-5)}{6} - \frac{2(a-2)}{6}$$

$$= \frac{y^2 - 20}{(y+2)(y-2)} - \frac{(y-2)(y-2)}{(y+2)(y-2)}$$

$$= \frac{3a - 15 - 2a + 4}{6} = \frac{a - 11}{6}$$

$$= \frac{y^2 - 20}{(y+2)(y-2)} - \frac{y^2 - 4y + 4}{(y+2)(y-2)}$$

$$= \frac{y^2 - 20 - y^2 + 4y - 4}{(y+2)(y-2)}$$

$$= \frac{y^2 - 20 - y^2 + 4y - 4}{(y+2)(y-2)}$$

$$= \frac{5}{(x-3)(x-2)} - \frac{4}{(x-3)(x-2)(x+2)}$$

$$= \frac{5(x+2)}{(x-3)(x-2)(x+2)} - \frac{4(x-2)}{(x-3)(x-2)(x+2)}$$

$$= \frac{5x + 10 - 4x + 8}{(x-3)(x-2)(x+2)}$$

$$= \frac{x + 18}{(x-3)(x-2)(x+2)}$$

$$= \frac{x + 18}{(x-3)(x-2)(x+2)}$$

$$= \frac{x + 18}{(x-3)(x-2)(x+2)}$$

$$= \frac{x + 1}{x} \cdot \frac{x}{(x+1)(x-1)} = \frac{1}{x-1}$$

#4. Solve each rational equation and list all the restrictions:

a)
$$\frac{x-2}{2} = \frac{2x+4}{5} - 1$$

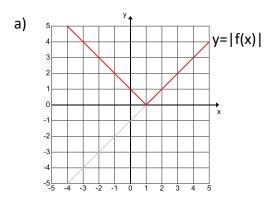
(10) $\left[\frac{x-2}{2} = \frac{2x+4}{5} - 1\right]$
5(x-2) = 2(2x+4) - 10(1)
5x-10 = 4x+8 - 10
5x-10 = 4x-2
x = 8 {8} no restrictions
b) $\frac{12}{x} - 1 = \frac{9}{x}$
(x) $\left[\frac{12}{x} - 1 = \frac{9}{x}\right]$
12 - 1x = 9
-1x = -3
x = 3 {3}
x \neq 0
c) $\frac{x}{x} - \frac{x-6}{x}$
c) $\frac{d}{x} - \frac{2-d}{x} + \frac{1}{x}$

c)
$$\frac{x}{x-2} = \frac{x-6}{x-4}$$

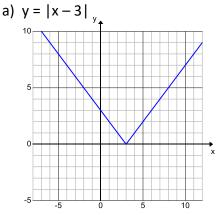
d) $\frac{d}{d+4} = \frac{2-d}{d^2+3d-4} + \frac{1}{d-1}$
 $(x-2)(x-4)\left[\frac{x}{x-2} = \frac{x-6}{x-4}\right]$
 $x(x-4) = (x-6)(x-2)$
 $x^2-4x = x^2-8x+12$
 $4x = 12$
 $x = 3$ {3} $x \neq 2 \ x \neq 4$
d) $\frac{d}{d+4} = \frac{2-d}{d^2+3d-4} + \frac{1}{d-1}$
 $(d+4)(d-1)\left[\frac{d}{d+4} = \frac{2-d}{(d+4)(d-1)} + \frac{1}{d-1}\right]$
 $d(d-1) = (2-d) + 1(d+4)$
 $d^2-d = 2-d+d+4$
 $d^2-d = 2-d+d+4$

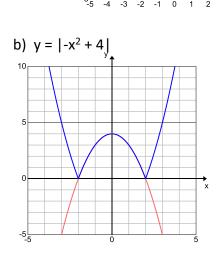
#5. The sum of two numbers is 12. The sum of their reciprocals is $\frac{4}{9}$. Find the numbers. Let x be one number Let 12 – x be the other {Sum of the numbers is 12}

$$\frac{1}{x} + \frac{1}{12 - x} = \frac{4}{9}$$
(9)(x)(12-x) $\left(\frac{1}{x} + \frac{1}{12 - x} = \frac{4}{9}\right)$
(1)(9)(12-x) + (1)(9)(x) = (4)(x)(12 - x)
108 - 9x + 9x = 48x - 4x²
4x² - 48x + 108 = 0
4(x² - 12x + 27) = 0
4(x - 9)(x - 3) = 0
x = 9 x = 3
The numbers are 9 and 3.


#6. Two hoses are used to fill up a pool. If one hose fills the pool in 6 hrs and the other fills the pool in 12 hrs, how much time would it take the fill the pool using both hoses?

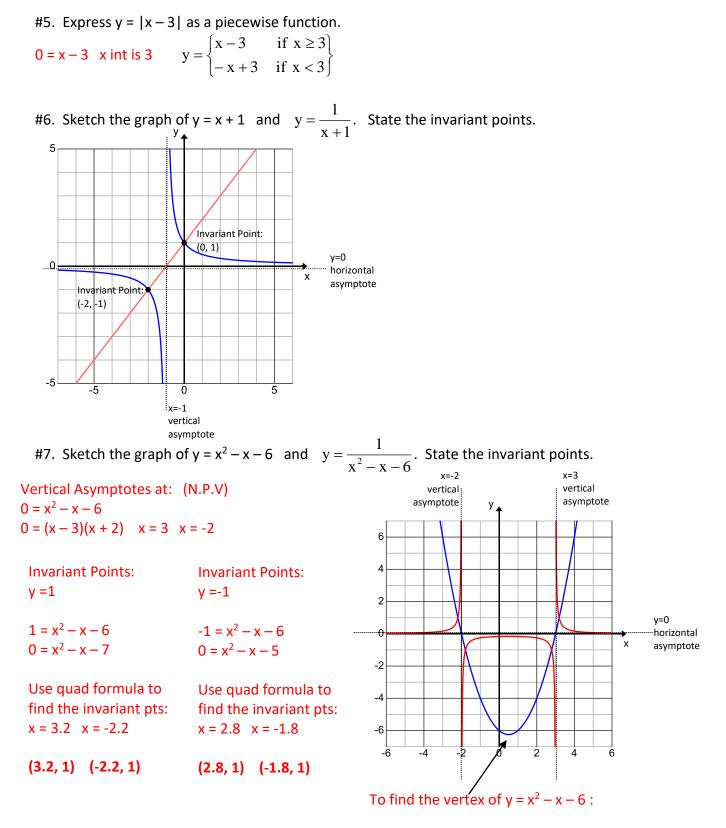
$$\frac{x}{6} + \frac{x}{12} = 1$$
 (12) $\left(\frac{x}{6} + \frac{x}{12} = 1\right)$ 2x + x = 12
3x = 12
x = 4
It will take 4 hrs to fill the pool.


Chp 7 Absolute Value and Reciprocal Functions


#1. Evaluate: b) -2|-6|=-2(6) = 3(2) - 4(2) = 7 - 7 c) 3|-2|-4|-2|= 3(2) - 4(2) = 7 - 7 c) 3|-2|-4|-2|= -7 - 7 a) |-3| =3 = 7 - 7 =6 - 8 --2 =-12 = 0 #2. Solve each equation: c) |4x+3| = 7a) |3x| = 9b) 5|4x|+10=5Pos Case Neg Case Pos Case Neg Case 5|4x|=-5 4x + 3 = -7|4x| = -1 4x + 3 = 7 3x = -9 3x = 94x = 4 4x = -10 x = -3 Not possible, abs x = 3 x = -2.5 x = 1 value is never neg Soln: { 3, -3} Soln: { 1, -2.5} Soln: { } e) $|x^2 - 2x + 2| = 3x - 4$ d) |3x+3| = 2x-5Pos CaseNeg Case $x^2 - 2x + 2 = 3x - 4$ $x^2 - 2x + 2 = -3x + 4$ $x^2 - 5x + 6 = 0$ $x^2 + x - 2 = 0$ (x - 3)(x - 2) = 0(x + 2)(x - 1) = 0x = 3x = 2x = -2x = -2Neg Case Pos Case 3x + 3 = -2x + 53x + 3 = 2x - 55x = 2 x = -8 (reject, it doesn't x = .4x = 3 x = 2 x = -2 x = 1 (reject, it doesn't check) reject both since check neither check Solution: { } no soln Soln: { 3, 2}

#3. Use the graph of y=f(x) to sketch the graph of y=|f(x)|

#4. Sketch the graph of:



b)

$$p = -\frac{b}{2a} = -\frac{0}{2(-1)} = 0$$

q = -(0)² + 4 = 4
vertex: (0, 4)

y=|f(x)|

Reflect neg values across the x-axis.

$$p = -\frac{b}{2a} = -\frac{-1}{2(1)} = \frac{1}{2} = .5$$

q = (.5)² - (.5) - 6
vertex: (.5, -6.25)

Chp 8 Systems

#1. Solve by graphing. Give approximate solutions if needed. Verify your solutions.

$$y = \frac{1}{2}x + 2$$

 $y + x^2 + 2x = 8$ Check (-4,0):
 $y = \frac{1}{2}x + 2$
 $0 = \frac{1}{2}(-4) + 2$
 $0 = -2 + 2$
 $0 = 0$ yes $y = -\frac{b}{2a} = \frac{-(-2)}{2(-1)} = -1$
 $q = -(-1)^2 - 2(-1) + 8 = 9$ $y + x^2 + 2x = 8$
 $0 + (-4)^2 + 2(-4) = 8$
 $0 + 16 - 8 = 8$
 $8 = 8$ yesVertex is at (-1, 9) $8 = 8$ yes

Solutions: {(-4,0) (1.5,2.7)} approximately

#2. Solve algebraically. Verify your solutions.

y = 3x + 1 $y = 6x^2 + 10x - 4$

Substitute 3x + 1 in for y in the 2^{nd} equation:

$$3x + 1 = 6x^{2} + 10x - 4$$

$$0 = 6x^{2} + 7x - 5$$

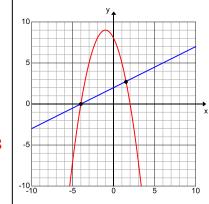
$$0 = (2x - 1)(3x + 5)$$

$$x = \frac{1}{2}$$

$$x = -\frac{5}{3}$$

substitute x to find y values

$$y = 3x + 1$$


$$y = 3\left(\frac{1}{2}\right) + 1$$

$$y = 3\left(-\frac{5}{3}\right) + 1$$

$$y = -4$$

Solutions: $\left\{\left(\frac{1}{2}, \frac{5}{2}\right), \left(-\frac{5}{3}, -4\right)\right\}$

Check:
$$\left(\frac{1}{2}, \frac{5}{2}\right)$$

 $y = 3x + 1$
 $\frac{5}{2} = 3\left(\frac{1}{2}\right) + 1$
 $\frac{5}{2} = 3\left(\frac{1}{2}\right) + 1$
 $\frac{5}{2} = \frac{3}{2} + \frac{2}{2}$
 $\frac{5}{2} = \frac{5}{2}$
 $y = 6x^2 + 10x - 4$
 $\frac{5}{2} = 6\left(\frac{1}{2}\right)^2 + 10\left(\frac{1}{2}\right) - 4$
 $\frac{5}{2} = 6\left(\frac{1}{4}\right) + 5 - 4$
 $\frac{5}{2} = \frac{3}{2} + 1$
 $\frac{5}{2} = \frac{5}{2}$
Check: $\left(-\frac{5}{3}, -4\right)$
 $y = 3x + 1$
 $-4 = 3\left(-\frac{5}{3}\right) + 1$
 $-4 = -5 + 1$
 $-4 = -4$
 $y = 6x^2 + 10x - 4$
 $-4 = 6\left(-\frac{5}{3}\right)^2 + 10\left(-\frac{5}{3}\right) - 4$
 $-4 = 6\left(\frac{25}{9}\right) - \frac{50}{3} - 4$
 $-4 = -4$
 $-4 = -4$

Check (1.5,2.7): $y = \frac{1}{2}x+2$ 2.7 = $\frac{1}{2}(1.5) + 2$ 2.7 = 2.75 yes, close $y + x^2 + 2x = 8$ 2.7 + (1.5)² + 2(1.5) = 8 2.7 + 2.25 + 3 = 8 7.95 = 8 yes, close

#3. Solve algebraically. Verify your solutions.

 $x^2 + y - 3 = 0$ $x^2 - y + 1 = 0$ Add both together to eliminate the y terms

$2x^2 - 2 = 0$ $2x^2 = 2$	You could also use substitution to solve this problem!	Check: (1, 2)	Check: (-1, 2)
$x^{2} = 1$ x = ±1		$x^{2} + y - 3 = 0$ (1) ² + 2 - 3 = 0 1 + 2 - 3 = 0	$x^{2} + y - 3 = 0$ (-1) ² + 2 - 3 = 0 1 + 2 - 3 = 0
substitute x to find x = 1	d y values x = -1	0 = 0	0 = 0
$x^{2} + y - 3 = 0$ (1) ² + y - 3 = 0 1 + y - 3 = 0 y = 2	$x^{2} + y - 3 = 0$ (-1) ² + y - 3 = 0 1 + y - 3 = 0 y = 2	$x^{2} - y + 1 = 0$ (1) ² - 2 + 1 = 0 1 - 2 + 1 = 0 0 = 0	$x^{2} - y + 1 = 0$ (-1) ² - 2 + 1 = 0 1 - 2 + 1 = 0 0 = 0

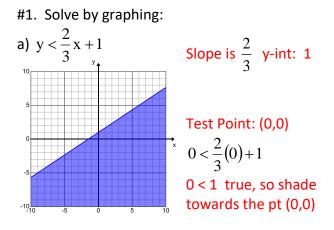
Solutions: {(1,2), (-1,2)}

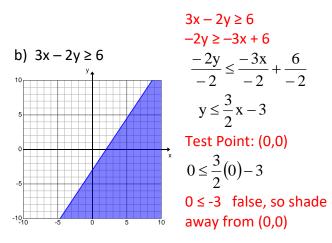
#4. Solve algebraically. Verify your solutions.

 $y = x^2 - 4x + 1$ $2y = -x^2 + 4x + 2$

substitute $x^2 - 4x + 1$ in for y in the 2nd equation:

$2(x^2 - 4x + 1) = -x^2 + 4x + 2$
$2x^2 - 8x + 2 = -x^2 + 4x + 2$
$3x^2 - 12x = 0$
3x(x-4)=0
x = 0 x = 4


substitute x to find y values


 $\begin{array}{ll} x = 0 & x = 4 \\ y = x^2 - 4x + 1 & 2y = -x^2 + 4x + 2 \\ y = (0)^2 - 4(0) + 1 & 2y = -(4)^2 + 4(4) + 2 \\ y = 1 & 2y = 2 \\ y = 1 \end{array}$

Solutions: {(0,1) , (4,1)}

Check: (0, 1)	Check: (4, 1)
$y = x^{2} - 4x + 1$ $1 = (0)^{2} - 4(0) + 1$ 1 = 1	$y = x^{2} - 4x + 1$ $1 = (4)^{2} - 4(4) + 1$ 1 = 16 - 16 + 1 1 = 1
$2y = -x^{2} + 4x + 2$ 2(1) = -(0) ² + 4(0) + 2 2 = 2	$2y = -x^{2} + 4x + 2$ 2(1) = -(4) ² + 4(4) + 2 2 = -16 + 16 + 2 2 = 2

Chp 9 Quadratic Inequalities

- #2. Solve:
- a) $x^2 + x 12 < 0$

(x + 4)(x - 3) < 0 zeros at -4 and 3

b) $x^2 > 5x$ zeros at $x^2 - 5x > 0$ x(x - 5) > 0 0 and 5 zeros at

Interval	x < -4	-4 < x < 3	x > 3
Test Point	-5	0	4
Substitution (Work Area)	(-5) ² + (-5) - 12 25-5-12 20-12 8	0 ² + 0 - 12 -12	$4^{2} + 4 - 12$ 16 + 4 - 12 20 - 12 8
Result: + or -	+	-	+

Solution is
$$x = \{x \mid -4 < x < 3, x \in \mathbb{R}\}$$

c)
$$x^{2} - 3x + 6 < 2x$$

 $x^{2} - 5x + 6 < 0$ $(x - 3)(x - 2) < 0$
zeros at 2 and 3

Interval	x < 2	2 < x < 3	x > 3
Test Point	-3	2.5	4
Substitution (Work Area)	(-3) ² -5(-3) + 6 9+15+6 30	(2.5) ² -5(2.5) + 6 6.25-12.5+6 25	(4) ² -5(4) + 6 16-20+6 2
Result: + or -	+	-	+

Solution is 2 < x < 3 $x = \{x | 2 < x < 3, x \in \mathbb{R}\}$

Interval
 x < 0
$$0 < x < 5$$
 x > 5

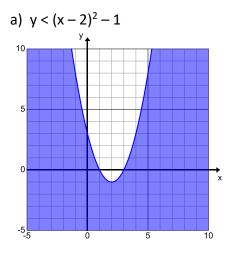
 Test Point
 -1
 1
 6

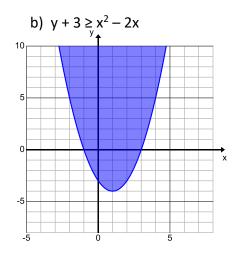
 Substitution
(Work Area)
 $(-1)^2 - 5(-1)$
 $(1)^2 - 5(1)$
 $(6)^2 - 5(6)$

 1 + 5
 1 - 5
 36 - 30

 6
 -4
 6

 Result: + or -
 +
 -


Solution is x < 0 and x > 5 $x = \{x | 5 > x > 0, x \in \mathbb{R}\}$


d)
$$2x^2 < 3 - 5x$$

 $2x^2 + 5x - 3 < 0$ $(2x - 1)(x + 3) < 0$
zeros at -3 and $\frac{1}{2}$

Interval	x < -3	-3 < x < ½	x > ½
Test Point	-4	0	1
Substitution (Work Area)	2(-4) ² +5(-4) - 3 32-20-3 9	2(0) ² +5(0) - 3 -3	2(1) ² +5(1) - 3 2+5-3 4
Result: + or -	+	-	+

Solution is -3 < x < $\frac{1}{2}x = \{x \mid -3 < x < 0.5, x \in \mathbb{R}\}$

#3. Solve by graphing:

Vertex: (2, -1) Use 1a/3a/5a to graph

Test Point: (0,0)

 $y < (x - 2)^2 - 1$ $0 < (0 - 2)^2 - 1$ 0 < 4 - 10 < 3 True, so shade towards pt (0,0)

$$y \ge x^2 - 2x - 3$$

 $p = -\frac{b}{2a} = -\frac{-2}{2(1)} = \frac{2}{2} = 1$
 $q = (1)^2 - 2(1) - 3 = -4$

Vertex: (1, -4) Use 1a/3a/5a to graph or use x-intercepts: (x - 3)(x + 1)x-intercepts: 3 and -1

Test Point: (0,0)

$$y \ge x^2 - 2x - 3$$

0 ≥ (0)² - 2(0) - 3
0 ≥ -3 True, so shade towards pt (0,0)