Math Pre-Calc 20 Final Review

Chp1 Sequences and Series

\#1. Write the first 4 terms of each sequence:
a) $t_{1}=3 \quad d=-2$
b) $t_{n}=3^{n}$
\#2. Find the value of the term indicated:
a) $1,3,9, \ldots, t_{7}$
b) $17,13,9, \ldots, t_{25}$
\#3. Find the number of terms in each sequence:
a) $\frac{1}{2}, \frac{7}{8}, \frac{5}{4}, \ldots, \frac{31}{2}$
b) $-5,-10,-20, \ldots,-10240$
\#4. Write the general term (t_{n}) for each sequence:
a) $-8,4,-2, \ldots$
b) $-5,-10,-15, \ldots$
\#5. The $20^{\text {th }}$ term of an arithmetic sequence is 12 and the $32^{\text {nd }}$ term is 48 . Find the first term and the common difference.
\#6. Write out the first three terms of the geometric sequence whose fifth term is 48 and whose seventh term is 192.
\#7. Find the sum of each series:
a) $100+90+80+\ldots+-200$
b) $3+6+12+\ldots+S_{9}$
\#8. Find the sum of the infinite geometric series:
a) $2+1+\frac{1}{2}+\ldots$
b) $4+\frac{20}{3}+\frac{100}{9} \ldots$
\#9. Suppose that each year a tree grow 90% as much as it did the year before. If the tree was 2.35 m tall after the $1^{\text {st }}$ year, how tall would it eventually get?
\#10. A man walks 5 km in week1, 8 km in week2, 11 km in week3 and so forth. How many km would he walk in total over 10 weeks?

Chp2 Trig

\#1. Sketch the angle and name its reference angle: 242°
\#2. Find the exact value of the following without using a calculator:
a) $\operatorname{Cos} 210^{\circ}$
b) $\operatorname{Sin} 315^{\circ}$
\#3. A point $\mathrm{P}(4,-3)$ lies on the terminal arm of an angle θ in standard position. Determine the exact trigonometric ratios for $\operatorname{Sin} \theta, \operatorname{Cos} \theta$ and $\operatorname{Tan} \theta$.
\#4. If $\operatorname{Sin} \theta=\frac{5}{13}, \theta$ is in Q 2 , find the $\operatorname{Cos} \theta$ and $\operatorname{Tan} \theta$.
\#5. Find the quadrant where $\operatorname{Cos} \theta<0$ and $\operatorname{Tan} \Theta>0$.
\#6. Solve for θ if $0^{\circ} \leq \Theta \leq 360^{\circ}$.

$$
\sin \theta=-\frac{\sqrt{3}}{2}
$$

\#7. Find each measure indicated:
a)

b)

c)

\#8. Solve each triangle $\triangle \mathrm{ABC}$.
a) $B=27^{\circ}, A=112^{\circ}, b=5$
b) $a=6, b=7, c=8$
\#9. Determine how many ABC triangles satisfy the following conditions.
a) $\angle A=65^{\circ}, a=9.1 \mathrm{~cm}$, and $b=10.7 \mathrm{~cm}$
b) $\angle \mathrm{A}=24^{\circ}, \mathrm{a}=5$, and $\mathrm{b}=7$
\#10. Two boats leave a dock at the same time. Each travels in a different direction. The angle between their courses is 54°. If one boat travels 80 km and the other travels 100 km , how far apart are they?

Chp 3 Quadratic Functions

\#1. Find the vertex of each quadratic:
a) $y=3 x^{2}$
b) $y+3=-\frac{1}{2} x^{2}$
c) $y=(x+1)^{2}+2$
\#2. Write each of the following in vertex-graphing form by completing the square:
a) $y=x^{2}+4 x$
b) $y=x^{2}+x-1$
c) $y=-3 x^{2}+12 x-2$
\#3. Answer the following questions for each quadratic function:
a) vertex b) equation of the axis of symmetry c) concavity (faces up or down)
d) maximum or minimum value e) domain and range f) x and y intercepts
g) sketch the graph
i) $y=-3(x+2)^{2}+3$
ii) $y=x^{2}+4 x+3$
\#4. Write a quadratic equation in vertex graphing form for each of the following:
a) $\mathrm{a}=2$ vertex is $(-1,2)$
b) vertex is $(3,2)$ and passes through the point ($2,-1$)
\#5. Write the new equation of the parabola $y=x^{2}$ after the following: (3 marks)
a) a horizontal translation 2 units to the left and a vertical translation 1 unit up
b) a vertical translation 3 units down and a reflection across the x-axis
c) a multiplication of the y-values by -2 and then a horizontal translation 1 unit to the right
\#6. A bridge has the shape of a parabola. Its width is 50 m and its height is 12 m . Find the quadratic equation for this bridge.
\#7. The height, " h ", in metres, of a flare " t " seconds after it is fired into the air is given by the equation $\mathrm{h}(\mathrm{t})=-4.9 \mathrm{t}^{2}+61.25 \mathrm{t}$. At what height is the flare at its maximum height? How many seconds after being shot does this occur?
\#8. A farmer has 100 m of fencing material to enclose a rectangular field adjacent to a river. No fencing is required along the river. Find the dimensions of the rectangle that will make its area a maximum. What is the maximum Area? (Hint: a diagram of the situation is given below)

Chp 4 Quadratic Equations

\#1. Solve the quadratic equations by factoring:
a) $3 x^{2}-36 x=0$
b) $2 x^{2}-7 x-15=0$
c) $6 x^{2}-11 x+3=24$
\#2. Solve the quadratic equations by completing the square: (Write answers in Exact Form)
a) $x^{2}-6 x+5=0$
b) $x^{2}+4 x+1=0$
c) $3 x^{2}-x-2=0$
\#3. Solve the quadratic equations using the quadratic formula: (Write answers in Exact Form)
a) $x^{2}+4 x-96=0$
b) $3 x^{2}=4$ (Hint: Same as $3 x^{2}-0 x-4=0$)
\#4. Find the zeros of the function $f(x)=x^{2}-10 x+16$.
\#5. Find the quadratic equation with the roots of $\left\{\frac{1}{2},-\frac{2}{3}\right\}$
\#6. Find the discriminant and state the nature of the roots:
a) $x^{2}-4 x-5=0$
b) $x^{2}=-9$
c) $x^{2}+2 x+1=0$
\#7. The hypotenuse of a right triangle is 13. If the sum of the legs is 17 , find the legs. (Hint: Let one leg be x and the other is therefore $17-x$...since the sum is 17 .)
\#8. If $h(t)=5 t^{2}-30 t+45$, find t when $h=20$. (Hint: $\left.20=5 t^{2}-30 t+45\right)$

Chp 5 Radicals

\#1. Simplify:
a) $\sqrt{150}$
b) $\sqrt[3]{32 x^{5}}$
c) $\sqrt[4]{32 \mathrm{x}^{9} \mathrm{y}^{6}}$
\#2. Change each mixed radical into an entire radical:
a) $4 \sqrt{3}$
b) $2 x \sqrt[3]{3 x^{2}}$
\#3. Simplify:
a) $5 \sqrt{2}-6 \sqrt{3}+7 \sqrt{2}-\sqrt{3}$
b) $\sqrt{108}-2 \sqrt{27}-\sqrt{40}-5 \sqrt{160}$
c) $3 \sqrt[3]{54}+2 \sqrt[3]{128}$
\#4. Multiply (Expand) the following and simplify:
a) $(\sqrt{6})(\sqrt{2})$
b) $(3 \sqrt{2 x})^{2}$
c) $\left(\sqrt[3]{4 x^{2}}\right)^{2}$
d) $(2 x \sqrt{3 y})\left(3 x \sqrt{6 y^{3}}\right)$
e) $3 \sqrt{2}(\sqrt{2}+\sqrt{3})$
f) $(3 \sqrt{2}-2 \sqrt{5})^{2}$
g) $(2+\sqrt{x})(3-\sqrt{x})$
\#5. Divide the following and be sure to rationalize all denominators:
a) $\frac{3 \sqrt{6}}{6 \sqrt{2}}$
b) $\frac{\sqrt{2}}{\sqrt{10}}$
c) $\frac{3 \sqrt{2}}{2 \sqrt{3}}$
d) $\frac{3 x}{\sqrt{2 x}}$
e) $\frac{3 \sqrt{3}-\sqrt{2}}{2 \sqrt{2}}$
f) $\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}$
g) $\frac{2}{\sqrt[3]{9}}$
\#6. Solve the radical equations:
a) $\sqrt{3 x-2}=7$
b) $6-2 \sqrt{x+7}=-2$
c) $\sqrt{2 x+5}=x-5$
d) $\sqrt{x^{2}+4}=3$
e) $\sqrt{y-5}+\sqrt{y}=5$

Chp 6 Rationals

\#1. Simplify:
a) $\frac{12 x^{2} y^{2}}{15 x y^{3}}$
b) $\frac{16 x^{2}-25}{12 x-15}$
c) $\frac{3 x-6}{2 x^{2}+x-10}$
\#2. Multiply/Divide the following and simplify:
a) $\frac{12 m^{2} f}{5 c f} \cdot \frac{15 \mathrm{c}}{4 \mathrm{~m}}$
b) $\frac{a^{2}-16}{16 a-4 a^{2}} \cdot \frac{2 a^{3}+6 a^{2}}{a^{2}+7 a+12}$
c) $\frac{8 y^{2}-2 y-3}{y^{2}-1} \div \frac{2 y^{2}-3 y-2}{2 y-2} \div \frac{3-4 y}{y+1}$
\#3. Add/Subtract the following and simplify:
a) $\frac{3}{m}+\frac{2}{\mathrm{n}}-\frac{3}{\mathrm{c}}$
b) $\frac{a-5}{2}-\frac{a-2}{3}$
c) $\frac{y^{2}-20}{y^{2}-4}-\frac{y-2}{y+2}$
d) $\frac{5}{x^{2}-5 x+6}-\frac{4}{x^{2}-x-6}$
e) $\frac{1+\frac{1}{\mathrm{x}}}{\mathrm{x}-\frac{1}{\mathrm{x}}}$
\#4. Solve each rational equation and list all the restrictions:
a) $\frac{x-2}{2}=\frac{2 x+4}{5}-1$
b) $\frac{12}{x}-1=\frac{9}{x}$
c) $\frac{x}{x-2}=\frac{x-6}{x-4}$
d) $\frac{\text { d }}{d+4}=\frac{2-d}{d^{2}+3 d-4}+\frac{1}{d-1}$
\#5. The sum of two numbers is 12 . The sum of their reciprocals is $\frac{4}{9}$. Find the numbers.
\#6. Two hoses are used to fill up a pool. If one hose fills the pool in 6 hrs and the other fills the pool in 12 hrs , how much time would it take the fill the pool using both hoses?

Chp 7 Absolute Value and Reciprocal Functions

\#1. Evaluate:
a) $|-3|$
b) $-2|-6|$
c) $3|-2|-4|-2|$
d) $|2-6-3|-|5-4+3(2)|$
\#2. Solve each equation:
a) $|3 x|=9$
b) $5|4 x|+10=5$
c) $|4 x+3|=7$
d) $|3 x+3|=2 x-5$
e) $\left|x^{2}-2 x+2\right|=3 x-4$
\#3. Use the graph of $y=f(x)$ to sketch the graph of $y=|f(x)|$
a)

b)

\#4. Sketch the graph of:
a) $y=|x-3|$
b) $y=\left|-x^{2}+4\right|$
\#5. Express $y=|x-3|$ as a piecewise function.
\#6. Sketch the graph of $y=x+1$ and $y=\frac{1}{x+1}$. State the invariant points.
\#7. Sketch the graph of $y=x^{2}-x-6$ and $y=\frac{1}{x^{2}-x-6}$. State the invariant points.

Chp 8 Systems

\#1. Solve by graphing. Give approximate solutions if needed. Verify your solutions.
$y=1 / 2 x+2$
$y+x^{2}+2 x=8$
\#2. Solve algebraically. Verify your solutions.
$y=3 x+1$
$y=6 x^{2}+10 x-4$
\#3. Solve algebraically. Verify your solutions.
$x^{2}+y-3=0$
$x^{2}-y+1=0$
\#4. Solve algebraically. Verify your solutions.
$y=x^{2}-4 x+1$
$2 y=-x^{2}+4 x+2$

Chp 9 Quadratic Inequalities
\#1. Solve by graphing:
a) $y<\frac{2}{3} x+1$
b) $3 x-2 y \geq 6$
\#2. Solve:
a) $x^{2}+x-12<0$
b) $x^{2}>5 x$
c) $x^{2}-3 x+6<2 x$
d) $2 x^{2}<3-5 x$
\#3. Solve by graphing:
a) $y<(x-2)^{2}-1$
b) $y+3 \geq x^{2}-2 x$

