6.1 Rational Expressions

Concept \#23 - Simplify Rational Expressions and Determine the Non - Permissible Values

$\underline{\text { Rational expression - an algebraic expression with a numerator and a denominator that are polynomials. }}$
Example:

Non-permissible values - a value for a variable that makes the expression undefined. In rational numbers, the denominator $\neq 0$.

Example: What are the non-permissible values for x in the following?

1. $\frac{6-x}{2 x}$
2. $\frac{3}{x-7}$
3. $\frac{4 x-1}{x^{2}+4 x+3}$
4. $\frac{5 t}{4 s r^{2}}$

Simplifying Rational Expressions

- divide out common factors in the numerator and denominator.

Example: Simplify and state non-permissible values.

1. $\frac{9}{12}$
2. $\frac{12 m^{2} t^{5}}{3 m t}$

Pre- Calculus 20(SUNDEEN) Outcome 20.3, 20.6 and 20.11
3. $\frac{3 x-6}{x-2}$

Ch. 6 \& 7.4- Rational Expressions, Equations and Reciprocal Functions
4. $\frac{x^{2}+2 x-15}{x-3}$
5. $\frac{2 y^{2}+y-10}{y^{2}+3 y-10}$
6. $\frac{x^{2}-10 x+24}{x^{2}-6 x}$
8. $\frac{25-x^{2}}{x^{2}-3 x-10}$

6.1 Assignment: Page 317 \#3 ace, 4 acef, 6, 8,11,13

6.2 Multiplying and Dividing Rational Expressions

Concept \#24 - To multiply and divide rational expressions

Multiplying Rational Expressions

- Factor numerators and denominators
- Divide out common terms (Reduce all fractions)

Examples: State non-permissible values then multiply.

1. $\frac{5}{8} \cdot \frac{2}{12}$
2. $\left(\frac{4 x^{2}}{3 x y}\right)\left(\frac{y^{5}}{8}\right)$
3. $\left(\frac{a^{2}-a-12}{a^{2}-9}\right)\left(\frac{a^{2}-4 a+3}{a^{2}-4 a}\right)$
4. $\frac{x^{2}-25}{x^{2}-49} \cdot \frac{x^{2}-6 x-7}{x^{2}+6 x+5}$

Dividing Rational Expressions

- Multiply by the reciprocal of the rational following the division sign
- Divide out common terms only when multiplying
- Restrictions(Non - Permissible Values) apply to anything in the denominator at any time

Reciprocals-Interchange the numerator and denominator

- Examples: $\frac{1}{2} \rightarrow \quad, \frac{x^{2}}{y} \rightarrow \quad, \frac{a+5}{a} \rightarrow$

Examples: Divide and simplify. State non-permissible values.

1. $\frac{6}{5} \div \frac{3}{2}$
2. $\frac{3 x^{2}}{y^{2}} \div \frac{x}{y}$
3. $\frac{x^{2}-4}{x^{2}-4 x} \div \frac{x^{2}+x-6}{x^{2}+x-20}$
4. $\frac{3 x+12}{3 x^{2}-5 x-12} \div \frac{12}{3 x+4} \times \frac{2 x-6}{x+4}$

6.3 Adding/Subtracting Rational Expressions

Concept \#25 - Add and Subtract Rational Expressions

Review Adding and Subtracting Fractions
a. $\frac{5}{7}-\frac{3}{7}$
b. $\frac{3}{5}+\frac{1}{10}$

Steps for Add/Subt. Rational Expressions

- Must have a common denominator (add numerators, leave denominators)
- Answer in simplest form (Reduce)
- State any non - permissible values (NPV)

Examples: Simplify the following rational expressions, leave answers in simplest form and state non-permissible values

1. $\frac{2 a}{b}-\frac{a-1}{b}$
2. $\frac{x^{2}}{x-2}+\frac{3 x}{x-2}-\frac{10}{x-2}$
3. $\frac{2 x}{x y}+\frac{4}{x^{2}}$
4. $\frac{y^{2}-20}{y^{2}-4}+\frac{y-2}{y+2}$
5. $\frac{x-1}{x^{2}+x-6}-\frac{x-2}{x^{2}+4 x+3}$
6. $\frac{1+\frac{1}{x}}{x-\frac{1}{x}}$
7. $\frac{x^{2}-49}{x^{2}-8 x+7}+\frac{2-2 x}{x^{2}-1}$
8. $\frac{x+1}{x+6}-\frac{x^{2}-4}{x^{2}+2 x} \div \frac{2 x^{2}+7 x+3}{2 x^{2}+x}$

6.4 Rational Equations (Day 1)

Concept \#26- To solve Rational Equations and check for extraneous roots

- An equation containing at least one rational (fractional) expression
- TO solve , find the LCD and multiply each term by the LCD to eliminate the fractions.
- Check. There may be extraneous roots

Review
$\frac{1}{2} x-\frac{2}{3}=\frac{1}{2}$

Example \#1 Solve the following rational equations. Check for extraneous roots.
a) $\frac{x}{4}-\frac{7}{x}=3$
b) $\frac{2 x}{x-4}=\frac{10}{x-4}$
c) $\frac{x}{x-2}+\frac{2}{x+2}=1$
d) $\frac{9}{y-3}-\frac{4}{y-6}=\frac{18}{y^{2}-9 y+18}$
e) $\frac{3 x}{x+2}-\frac{5}{x-3}=\frac{-25}{x^{2}-x-6}$

6.4 Assign. Pg 348 \#1,2,3,6,8,11

Concept \#27 - To solve situational problems involving rational expressions

Example \#1 Two friends share a paper route. Sheena can deliver the papers in 40 min . Jeff can cover the same route in 50 min . How long, to the nearest minute, does the paper route take if they work together?

Make a table to organize the information

Sheena			
Jeff			
Together			

Example \#2 A train has a scheduled run of 160 km between two cities in Saskatchewan. If the average speed is decreased by $16 \mathrm{~km} / \mathrm{h}$, the run will take $1 / 2$ hour longer. What is the average speed of the train?

Example \#3/ Jerry jogged 9 km in an hour. He covered the last 4 km at a speed that was $2 \mathrm{~km} / \mathrm{h}$ slower than his speed over the first 5 km . What was his speed over the first 5 km ?

The time for the first 5 km is calculated using the equation $t=\frac{d}{s}=\frac{5}{s}$. The time for the last 4 km is $t=\frac{4}{s-2}$, because he jogged at $2 \mathrm{~km} / \mathrm{h}$ less than the first 5 km .
The total time is 1 h , which is the sum of the time for the $5-\mathrm{km}$ segment and the time for the $4-\mathrm{km}$ segment: $1=\frac{5}{s}+\frac{4}{s-2}$
Add the rational expressions and solve for s :

$$
\begin{aligned}
& 1=\frac{5}{s}+\frac{4}{s-2} \\
& 1=\frac{5(s-2)}{s(s-2)}+\frac{4 s}{s(s-2)} \\
& s(s-2)=5(s-2)+4 s \\
& s^{2}-2 s=5 s-10+4 s \\
& s^{2}-11 s+10=0 \\
&(s-1)(s-10)=0 \\
& s=1 \text { or } s=10
\end{aligned}
$$

Since a speed of $1 \mathrm{~km} / \mathrm{h}$ would result in a negative speed for the $4-\mathrm{km}$ segment, this answer is rejected. Jerry jogged at a speed of $10 \mathrm{~km} / \mathrm{h}$ for the first 5 km .

