5.1 Radicals

Concept \#19: To convert radicals in mixed form to entire form (and vice versa), to identify the restriction on the value for a variable in a radical expression and to add and subtract radicals.

" r " is the \qquad
" n " is the \qquad
" x " is the \qquad

Perfect Squares:

Perfect Cubes

- 1, 4,
- x^{2}, x^{4},
- 1,8 ,
- x^{3}, x^{6},

Example \#1- Changing Mixed Radicals to Entire Radicals

1) $7 \sqrt{2}$
2) $a^{4} \sqrt{a}$
3) $-5 \mathrm{~b} \sqrt[3]{3 b^{2}}$

Radicals in Simplest Form are Mixed Radicals such that:

- the radicand contains no factor that is a perfect square, cube, etc. (Depending on the index)
- there is no radical in the denominator of a fraction.

Example \#2: Write as a mixed radical in simplest form.

1) $\sqrt{52}$
2) $\sqrt[3]{48 c^{4}}$
3) $5 \sqrt{72}$
4) $\sqrt{48 y^{5}}$
5) $\sqrt{27 x^{4} y^{12}}$
6) $\sqrt[4]{m^{7}}$

Example \#3: Order the following five numbers in order from least to greatest without using a calculator
a) $4(13)^{\frac{1}{2}}, 8 \sqrt{3}, 14, \sqrt{202}, 10 \sqrt{2}$

Adding/Subtracting Radicals - simplify then combine like terms (terms that have the same index and the same radicand)

Example \#4: 1) $\sqrt{5}-6 \sqrt{5}$
2) $3 \sqrt{5}+1.2+2 \sqrt{2}-8 \sqrt{5}-6 \sqrt{2}+5$
3) $-\sqrt{27}+3 \sqrt{5}-\sqrt{80}-2 \sqrt{12}$
4) $\sqrt{4 c}-4 \sqrt{9 c} \quad(c \geq 0)$
$\underline{\text { Restrictions - if a radical represents a real number and has an even index, the radicand must be positive or } 0 .}$
Example \#5: Identify the restrictions on the values for the variables.
a) $-5 \sqrt{2 a}$
b) $2 a \sqrt{x-4}$
c) $\sqrt[3]{8 r}$

Note: If the index is odd, the radicand can be any real number.

5.2 Multiplying and Dividing Radical Expressions (Day1)

Concept \#20: To multiply radical expressions with one or more terms and leave answers in simplest form. Also state restrictions.

Multiplying Radical Expressions

- multiply the \qquad and multiply the \qquad (if they have the same index)
- radicals should be simplified before multiplying
- answer in simplest form
- state restrictions for variables (if index is even, the radicand must be \qquad
Examples - Multiply and simplify. State any restrictions on the values of the variables.

1) $(5 \sqrt{2} x)(3 \sqrt{5} x)=$
2) $(3 \sqrt{6})(-4 \sqrt{2})=$
3) $7 \sqrt{3}(2 \sqrt{3}-5 \sqrt{7})=$
4) $5 \sqrt[3]{9}(4 \sqrt[3]{2}+9 \sqrt[3]{3})=$
5) $(4 \sqrt{2}+2 \sqrt{3})(5 \sqrt{2}-6 \sqrt{3})=$
6) $9 \sqrt[3]{2 w}(\sqrt[3]{4 w}+7 \sqrt[3]{28})=$
7) $(2 \sqrt{5}-3 \sqrt{2})^{2}=$
8) $(5 \sqrt{2}-6 \sqrt{3})(5 \sqrt{2}+6 \sqrt{3})=$

5.2 DAY 1 Assignment: Page 289 \#1abcd, 2ac, 3ab, 4abc, 5

5.2 (con't) Dividing Radical Expressions (Day 2)

Concept \#21: To divide radicals and rationalize a square root monomial and a square root binomial denominator using the conjugate

- Divide the \qquad and divide the \qquad (if they have the same index)
- A rational in simplest form does not have a radical in the denominator. If necessary, rationalize the denominator:
a) monomial denominator - multiply the numerator and denominator by an expression that produces a rational number in the denominator
b) binomial denominator - multiply the numerator and denominator by the \qquad of the denominator. Conjugate: $(a+b)$ and $(a-b)$ are conjugates

Example\#1 - Find the conjugate of the following

1) $5 \sqrt{2}-\sqrt{3} \rightarrow$
2) $-2 \sqrt{6}+5 \sqrt{7} \rightarrow$

Example\#2 - Divide and simplify

1) $\frac{\sqrt{24 x^{3}}}{\sqrt{3 x}} ; \mathrm{x} \geq 0$
2) $\frac{12 \sqrt{6}}{15 \sqrt{3}}$
3) $\frac{8 \sqrt{5}}{4 \sqrt{2}}$
4) $\frac{7 \sqrt{3}}{3 \sqrt{x}}$
5) $\frac{6}{3+\sqrt{2}}$
6) $\frac{5 \sqrt{2}}{3 \sqrt{2}-\sqrt{3}}$
7) $\frac{4+\sqrt{2}}{\sqrt{3}+5 \sqrt{2}}$
8) $\frac{4 \sqrt{11}}{y \sqrt[3]{6}}$

5.3 Radical Equations (Day 1 and 2)

Concept\#22: To solve Radical equations (equations where the variable you are solving is in the radicand) and check for extraneous roots.

STEPS:

1. State your restriction(s)
2. Isolate one radical (if there are two you should begin by getting the most complicated one by itself)
3. Square both sides (if there is a binomial on one side you must square that binomial and get a trinomial!)
4. If there is still a radical in your equation, isolate it and repeat step 2 again
5. Solve for the variable
6. Verify your answers. very important!! Does it meet the restrictions? Is it extraneous?
7. Note: If none of your answers satisfy the check or restrictions there is "NO SOLUTION"

Example\#1: a) State the restrictions on x. b) Solve the radical
c) Verify your solution(s) and state any extraneous roots

$$
5+\sqrt{2 x-1}=12
$$

Example \#2 a) State the restrictions on $m \quad$ b) Solve the radical
c) Verify your solution(s) and state any extraneous roots

$$
m-\sqrt{2 m+3}=6
$$

\#6b) $\operatorname{Pg} 300-7-4 \sqrt{2 x-1}=17 ; x \geq \frac{1}{2}$

Example \#3: Solve $\sqrt{x+2}-\sqrt{3 x-5}=-1$

Example\#4: Solve $7+\sqrt{3 x}=\sqrt{5 x+4}+5$

5.3 Day 2

Example \#5 What is the speed, in metres per second, of a 0.4 kg football that has 28.8 J of Kinetic energy? Use the kinetic energy formula, $\mathrm{E}_{\mathrm{k}}=\frac{1}{2} m v^{2}$, where E_{k} represents the kinetic energy, in joules; m represents mass, in kilograms; and v represents speed in metres per second.

Example \#6/State restrictions and solve $\sqrt{3 x^{2}-12}=x+5$ (Video approx. 5 mins)
https://www.youtube.com/watch?v=rbJjp9KrA6s\&t=1s\&list=WL\&index=2 or https://bit.|y/2MMvZU5

