3 Ways to solve systems of equations:

1. **Graphically**
2. **Substitution**
3. **Elimination**

To verify, check ALL answers in BOTH equations.

NOTE

- If 0x = 0 (a true statement), x can be anything, so there are an infinite number of solutions.
- If 0x = 5 (a false statement), there are NO solutions

Method 1: Substitution

To solve a system of equations in two variables using substitution,

1. isolate one variable in one equation
2. substitute the expression into the other equation and solve for the remaining variable
3. substitute the value(s) into one of the original equations to determine the corresponding value(s) of the other variable
4. verify your answer by substituting into both original equations

Solve:

\[5x - y = 10 \]
\[x^2 + x - 2y = 0 \]

Step 1: Isolate the "y" in equation 1

\[5x - y = 10 \]
\[-y = 10 - 5x \]
\[y = -10 + 5x \]

Step 2: Substitute into equation 2

\[x^2 + x - 2(10 - 5x) = 0 \]
\[x^2 + x - 20 + 10x = 0 \]
\[x^2 + 11x - 20 = 0 \]
\[(x - 4)(x - 5) = 0 \]
\[x - 4 = 0 \quad x - 5 = 0 \]
\[x = 4 \quad x = 5 \]

Step 3: When x = 4, y = ? Substitute x = 4 into either equation to find y

\[5(4) - y = 10 \]
\[20 - y = 10 \]
\[-y = -10 \]
\[y = 10 \]

Step 3: When x = 5, y = ? Substitute x = 5 into either equation

\[5(5) - y = 10 \]
\[25 - y = 10 - 25 \]
\[-y = -15 \]
\[y = 15 \]

The solutions are (4, 10) and (5, 15)
Solve:
1. \(2x^2 + 4y = 15\)
2. \(4x^2 + 8y = 20\)

Step 1 Isolate the "y"

1. \(2x^2 + 4y = 15 - 2x^2\)
2. \(4y = 15 - 2x^2\)
3. \(y = \frac{15}{4} - \frac{1}{2}x^2\)

Step 2 Substitute into \(\text{eq. 2}\)

1. \(4x^2 + 8\left(\frac{15}{4} - \frac{1}{2}x^2\right) = 20\)
2. \(4x^2 + 30 - 4x^2 = 20\)
3. \(0x^2 + 30 = 20\)
4. \(-30\)
5. \(0x^2 = -10\) (False statement)
6. No Solutions

Example 2 Determine two integers that have the following relationships: Fourteen more that twice the first integer gives the second integer. The second integer increased by one is the square of the first integer.

a) Write a system of equations that relates to the problem.

b) Solve the system algebraically

Let \(x = 1^{st}\) integer
Let \(y = 2^{nd}\) integer

\[\begin{align*}
a) &\quad 2x + 14 = y \\
&\quad y + 1 = x^2 \\
\\n&\quad \text{When } x = 5 \quad y = 24 \\
&\quad \text{When } x = 3 \quad y = 8 \\
&\quad \left(5, 24\right) \\
&\quad \left(-3, 8\right)
\end{align*}\]

Solve by factoring
\[\begin{align*}
&\quad 0 = (x - 5)(x + 3) \\
&\quad x = 5 \\
&\quad x = -3
\end{align*}\]

The numbers are 5 and 24 or -3 and 8

Assignment: Page 451 #1, 3ace, 8, 10